Rigid local systems and motives of type G2: with an appendix by Michale Dettweiler and Nicholas M. Katz

Using the middle convolution functor MCχ introduced by N. Katz, we prove the existence of rigid local systems whose monodromy is dense in the simple algebraic group G2. We derive the existence of motives for motivated cycles which have a motivic Galois group of type G2. Granting Grothendieck’s stand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dettweiler, Michael (VerfasserIn) , Reiter, Stefan (VerfasserIn)
Weitere Verfasser: Katz, Nicholas M. (MitwirkendeR)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 March 2010
In: Compositio mathematica
Year: 2010, Jahrgang: 146, Heft: 4, Pages: 929-963
ISSN:1570-5846
DOI:10.1112/S0010437X10004641
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1112/S0010437X10004641
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/compositio-mathematica/article/rigid-local-systems-and-motives-of-type-g2-with-an-appendix-by-michale-dettweiler-and-nicholas-m-katz/7D15D3383A51EB58325E6387F78783B2
Volltext
Verfasserangaben:Michael Dettweiler and Stefan Reiter
Beschreibung
Zusammenfassung:Using the middle convolution functor MCχ introduced by N. Katz, we prove the existence of rigid local systems whose monodromy is dense in the simple algebraic group G2. We derive the existence of motives for motivated cycles which have a motivic Galois group of type G2. Granting Grothendieck’s standard conjectures, the existence of motives with motivic Galois group of type G2 can be deduced, giving a partial answer to a question of Serre.
Beschreibung:Gesehen am 31.01.2024
Beschreibung:Online Resource
ISSN:1570-5846
DOI:10.1112/S0010437X10004641