Rigid local systems and motives of type G2: with an appendix by Michale Dettweiler and Nicholas M. Katz

Using the middle convolution functor MCχ introduced by N. Katz, we prove the existence of rigid local systems whose monodromy is dense in the simple algebraic group G2. We derive the existence of motives for motivated cycles which have a motivic Galois group of type G2. Granting Grothendieck’s stand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dettweiler, Michael (VerfasserIn) , Reiter, Stefan (VerfasserIn)
Weitere Verfasser: Katz, Nicholas M. (MitwirkendeR)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 March 2010
In: Compositio mathematica
Year: 2010, Jahrgang: 146, Heft: 4, Pages: 929-963
ISSN:1570-5846
DOI:10.1112/S0010437X10004641
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1112/S0010437X10004641
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/compositio-mathematica/article/rigid-local-systems-and-motives-of-type-g2-with-an-appendix-by-michale-dettweiler-and-nicholas-m-katz/7D15D3383A51EB58325E6387F78783B2
Volltext
Verfasserangaben:Michael Dettweiler and Stefan Reiter

MARC

LEADER 00000caa a2200000 c 4500
001 187965671X
003 DE-627
005 20240325174203.0
007 cr uuu---uuuuu
008 240131s2010 xx |||||o 00| ||eng c
024 7 |a 10.1112/S0010437X10004641  |2 doi 
035 |a (DE-627)187965671X 
035 |a (DE-599)KXP187965671X 
035 |a (OCoLC)1425872688 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Dettweiler, Michael  |d 1969-  |e VerfasserIn  |0 (DE-588)121447170  |0 (DE-627)081313543  |0 (DE-576)292716087  |4 aut 
245 1 0 |a Rigid local systems and motives of type G2  |b with an appendix by Michale Dettweiler and Nicholas M. Katz  |c Michael Dettweiler and Stefan Reiter 
264 1 |c 24 March 2010 
300 |b Illustrationen 
300 |a 35 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 31.01.2024 
520 |a Using the middle convolution functor MCχ introduced by N. Katz, we prove the existence of rigid local systems whose monodromy is dense in the simple algebraic group G2. We derive the existence of motives for motivated cycles which have a motivic Galois group of type G2. Granting Grothendieck’s standard conjectures, the existence of motives with motivic Galois group of type G2 can be deduced, giving a partial answer to a question of Serre. 
650 4 |a 14C25 (secondary) 
650 4 |a 14F05 (primary) 
650 4 |a local systems 
650 4 |a middle convolution 
650 4 |a motives 
700 1 |a Reiter, Stefan  |e VerfasserIn  |0 (DE-588)1288166532  |0 (DE-627)1844656896  |4 aut 
700 1 |a Katz, Nicholas M.  |d 1943-  |e MitwirkendeR  |0 (DE-588)141265558  |0 (DE-627)626527678  |0 (DE-576)161663443  |4 ctb 
773 0 8 |i Enthalten in  |t Compositio mathematica  |d Cambridge : Cambridge Univ. Press, 1935  |g 146(2010), 4, Seite 929-963  |h Online-Ressource  |w (DE-627)266882692  |w (DE-600)1468114-6  |w (DE-576)102668906  |x 1570-5846  |7 nnas  |a Rigid local systems and motives of type G2 with an appendix by Michale Dettweiler and Nicholas M. Katz 
773 1 8 |g volume:146  |g year:2010  |g number:4  |g pages:929-963  |g extent:35  |a Rigid local systems and motives of type G2 with an appendix by Michale Dettweiler and Nicholas M. Katz 
856 4 0 |u https://doi.org/10.1112/S0010437X10004641  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.cambridge.org/core/journals/compositio-mathematica/article/rigid-local-systems-and-motives-of-type-g2-with-an-appendix-by-michale-dettweiler-and-nicholas-m-katz/7D15D3383A51EB58325E6387F78783B2  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240131 
993 |a Article 
994 |a 2010 
998 |g 121447170  |a Dettweiler, Michael  |m 121447170:Dettweiler, Michael  |d 700000  |d 708000  |e 700000PD121447170  |e 708000PD121447170  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN187965671X  |e 4472845369 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"roleDisplay":"VerfasserIn","display":"Dettweiler, Michael","role":"aut","family":"Dettweiler","given":"Michael"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Reiter, Stefan","given":"Stefan","family":"Reiter"},{"given":"Nicholas M.","family":"Katz","role":"ctb","roleDisplay":"MitwirkendeR","display":"Katz, Nicholas M."}],"title":[{"subtitle":"with an appendix by Michale Dettweiler and Nicholas M. Katz","title":"Rigid local systems and motives of type G2","title_sort":"Rigid local systems and motives of type G2"}],"language":["eng"],"recId":"187965671X","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 31.01.2024"],"name":{"displayForm":["Michael Dettweiler and Stefan Reiter"]},"id":{"eki":["187965671X"],"doi":["10.1112/S0010437X10004641"]},"origin":[{"dateIssuedKey":"2010","dateIssuedDisp":"24 March 2010"}],"relHost":[{"title":[{"title":"Compositio mathematica","title_sort":"Compositio mathematica"}],"pubHistory":["1.1935 -"],"part":{"extent":"35","text":"146(2010), 4, Seite 929-963","volume":"146","pages":"929-963","issue":"4","year":"2010"},"disp":"Rigid local systems and motives of type G2 with an appendix by Michale Dettweiler and Nicholas M. KatzCompositio mathematica","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 05.03.2018"],"language":["eng"],"recId":"266882692","origin":[{"dateIssuedDisp":"1935-","publisher":"Cambridge Univ. Press ; Kluwer","dateIssuedKey":"1935","publisherPlace":"Cambridge ; Dordrecht [u.a.]"}],"id":{"issn":["1570-5846"],"zdb":["1468114-6"],"eki":["266882692"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"35 S.","noteIll":"Illustrationen"}]} 
SRT |a DETTWEILERRIGIDLOCAL2420