Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning
Abstract: Scalable and transferable methods for generating reliable reference data for automated remote sensing approaches are crucial, especially for mapping complex Earth surface processes such as gully erosion in low-populated and inaccessible areas. As an alternative for the labour-intense in-si...
Gespeichert in:
| Hauptverfasser: | , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
April 2024
|
| In: |
ISPRS open journal of photogrammetry and remote sensing
Year: 2024, Jahrgang: 12, Pages: 1-15 |
| ISSN: | 2667-3932 |
| DOI: | 10.1016/j.ophoto.2024.100059 |
| Online-Zugang: | Resolving-System, kostenfrei, Volltext: https://doi.org/10.1016/j.ophoto.2024.100059 Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S2667393224000024?via%3Dihub |
| Verfasserangaben: | Miguel Vallejo, Katharina Anders, Oluibukun Ajayi, Olaf Bubenzer, Bernhard Höfle |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1880834146 | ||
| 003 | DE-627 | ||
| 005 | 20240513150355.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240215s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.ophoto.2024.100059 |2 doi | |
| 035 | |a (DE-627)1880834146 | ||
| 035 | |a (DE-599)KXP1880834146 | ||
| 035 | |a (OCoLC)1425200268 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 61 |2 sdnb | ||
| 100 | 1 | |a Vallejo Orti, Miguel |d 1983- |e VerfasserIn |0 (DE-588)1192770056 |0 (DE-627)167124317X |4 aut | |
| 245 | 1 | 0 | |a Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning |c Miguel Vallejo, Katharina Anders, Oluibukun Ajayi, Olaf Bubenzer, Bernhard Höfle |
| 264 | 1 | |c April 2024 | |
| 300 | |a 15 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht: 10. Februar 2024 | ||
| 500 | |a Gesehen am 26.02.2024 | ||
| 520 | |a Abstract: Scalable and transferable methods for generating reliable reference data for automated remote sensing approaches are crucial, especially for mapping complex Earth surface processes such as gully erosion in low-populated and inaccessible areas. As an alternative for the labour-intense in-situ authoritative mapping, collaborative approaches enable volunteers to generate redundant independent geoinformation by digitising Earth observation imagery. We face the challenge of mapping the complex gully outlines integrating multi-user contributions of the same gully network. Comparing Sentinel 2, Bing Aerial, and unoccupied aerial vehicle orthophoto base maps, we examine the volunteered geographic information process and multi-contribution integration using Kalman filtering and machine learning to segment a gully border in a remote area in northwestern Namibia. The Kalman filtering integrates the different lines finding a smoothed solution, and a Random Forest model is used to identify mapping conditions and terrain features as key predictors for evaluating contributors' digitising quality. Assessing results with expert-based reference data, we identify ten contributions as optimal, yielding root mean square distance values of 19.1 m, 15.9 m and 16.6 m, and variability of 2.0 m, 4.2 m and 3.8 m (root mean square distance standard deviation) for Sentinel 2, Bing Aerial, and unoccupied aerial vehicle orthophoto, respectively. Eliminating the lowest performing contributions for Sentinel 2 using a Random Forest regression-based quality indicator improves the accuracy by up to 35% in the root mean square distance compared to a random selection, and up to 54% compared to a supervised remote sensing classification. Results for Sentinel 2 show that low slope, low terrain ruggedness index, and high normalised difference vegetation index values are correlated to high spatial mapping deviations, with Pearson correlation coefficients of −0.61, −0.5, and 0.18, respectively. Our approach is a powerful alternative for authoritative mapping of morphologically complex environmental phenomena and can provide independent reference data for supervised automatic remote sensing analysis. | ||
| 700 | 1 | |a Anders, Katharina |d 1990- |e VerfasserIn |0 (DE-588)1128842580 |0 (DE-627)883601109 |0 (DE-576)48610298X |4 aut | |
| 700 | 1 | |a Ajayi, Oluibukun |e VerfasserIn |4 aut | |
| 700 | 1 | |a Bubenzer, Olaf |d 1964- |e VerfasserIn |0 (DE-588)173301495 |0 (DE-627)698219147 |0 (DE-576)181476576 |4 aut | |
| 700 | 1 | |a Höfle, Bernhard |e VerfasserIn |0 (DE-588)1019895403 |0 (DE-627)691049297 |0 (DE-576)358986753 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t ISPRS open journal of photogrammetry and remote sensing |d Amsterdam : Elsevier, 2021 |g 12(2024) vom: Apr., Artikel-ID 100059, Seite 1-15 |h Online-Ressource |w (DE-627)1786048418 |w (DE-600)3106021-3 |x 2667-3932 |7 nnas |a Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning |
| 773 | 1 | 8 | |g volume:12 |g year:2024 |g month:04 |g elocationid:100059 |g pages:1-15 |g extent:15 |a Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning |
| 787 | 0 | 8 | |i Forschungsdaten |a Vallejo Orti, Miguel, 1983 - |t Integrating VGI contributions for gully mapping using Kalman filter and machine learning |d Heidelberg : Universität, 2024 |h 1 Online-Ressource (7 Files) |w (DE-627)1888406216 |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.ophoto.2024.100059 |x Resolving-System |x Verlag |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S2667393224000024?via%3Dihub |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240215 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1019895403 |a Höfle, Bernhard |m 1019895403:Höfle, Bernhard |d 120000 |d 120700 |e 120000PH1019895403 |e 120700PH1019895403 |k 0/120000/ |k 1/120000/120700/ |p 5 |y j | ||
| 998 | |g 173301495 |a Bubenzer, Olaf |m 173301495:Bubenzer, Olaf |d 120000 |d 120700 |e 120000PB173301495 |e 120700PB173301495 |k 0/120000/ |k 1/120000/120700/ |p 4 | ||
| 998 | |g 1128842580 |a Anders, Katharina |m 1128842580:Anders, Katharina |d 120000 |d 120700 |e 120000PA1128842580 |e 120700PA1128842580 |k 0/120000/ |k 1/120000/120700/ |p 2 | ||
| 998 | |g 1192770056 |a Vallejo Orti, Miguel |m 1192770056:Vallejo Orti, Miguel |p 1 |x j | ||
| 999 | |a KXP-PPN1880834146 |e 448463256X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1880834146"],"doi":["10.1016/j.ophoto.2024.100059"]},"language":["eng"],"origin":[{"dateIssuedDisp":"April 2024","dateIssuedKey":"2024"}],"relHost":[{"name":{"displayForm":["International Society for Photogrammetry and Remote Sensing"]},"pubHistory":["Volume 1 (October 2021)-"],"recId":"1786048418","disp":"Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learningISPRS open journal of photogrammetry and remote sensing","titleAlt":[{"title":"IOJPRS"}],"title":[{"title_sort":"ISPRS open journal of photogrammetry and remote sensing","title":"ISPRS open journal of photogrammetry and remote sensing","subtitle":"IOJPRS"}],"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"12","extent":"15","year":"2024","text":"12(2024) vom: Apr., Artikel-ID 100059, Seite 1-15","pages":"1-15"},"origin":[{"publisher":"Elsevier","publisherPlace":"Amsterdam","dateIssuedDisp":"[2021]-"}],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"eki":["1786048418"],"zdb":["3106021-3"],"issn":["2667-3932"]},"corporate":[{"role":"isb","display":"International Society for Photogrammetry and Remote Sensing"}]}],"physDesc":[{"extent":"15 S."}],"person":[{"role":"aut","family":"Vallejo Orti","display":"Vallejo Orti, Miguel","given":"Miguel"},{"role":"aut","family":"Anders","display":"Anders, Katharina","given":"Katharina"},{"family":"Ajayi","display":"Ajayi, Oluibukun","given":"Oluibukun","role":"aut"},{"role":"aut","display":"Bubenzer, Olaf","family":"Bubenzer","given":"Olaf"},{"given":"Bernhard","family":"Höfle","display":"Höfle, Bernhard","role":"aut"}],"title":[{"title":"Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning","title_sort":"Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning"}],"recId":"1880834146","note":["Online veröffentlicht: 10. Februar 2024","Gesehen am 26.02.2024"],"name":{"displayForm":["Miguel Vallejo, Katharina Anders, Oluibukun Ajayi, Olaf Bubenzer, Bernhard Höfle"]}} | ||
| SRT | |a VALLEJOORTINTEGRATIN2024 | ||