Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning

Abstract: Scalable and transferable methods for generating reliable reference data for automated remote sensing approaches are crucial, especially for mapping complex Earth surface processes such as gully erosion in low-populated and inaccessible areas. As an alternative for the labour-intense in-si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vallejo Orti, Miguel (VerfasserIn) , Anders, Katharina (VerfasserIn) , Ajayi, Oluibukun (VerfasserIn) , Bubenzer, Olaf (VerfasserIn) , Höfle, Bernhard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: April 2024
In: ISPRS open journal of photogrammetry and remote sensing
Year: 2024, Jahrgang: 12, Pages: 1-15
ISSN:2667-3932
DOI:10.1016/j.ophoto.2024.100059
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1016/j.ophoto.2024.100059
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S2667393224000024?via%3Dihub
Volltext
Verfasserangaben:Miguel Vallejo, Katharina Anders, Oluibukun Ajayi, Olaf Bubenzer, Bernhard Höfle

MARC

LEADER 00000caa a2200000 c 4500
001 1880834146
003 DE-627
005 20240513150355.0
007 cr uuu---uuuuu
008 240215s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ophoto.2024.100059  |2 doi 
035 |a (DE-627)1880834146 
035 |a (DE-599)KXP1880834146 
035 |a (OCoLC)1425200268 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Vallejo Orti, Miguel  |d 1983-  |e VerfasserIn  |0 (DE-588)1192770056  |0 (DE-627)167124317X  |4 aut 
245 1 0 |a Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning  |c Miguel Vallejo, Katharina Anders, Oluibukun Ajayi, Olaf Bubenzer, Bernhard Höfle 
264 1 |c April 2024 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 10. Februar 2024 
500 |a Gesehen am 26.02.2024 
520 |a Abstract: Scalable and transferable methods for generating reliable reference data for automated remote sensing approaches are crucial, especially for mapping complex Earth surface processes such as gully erosion in low-populated and inaccessible areas. As an alternative for the labour-intense in-situ authoritative mapping, collaborative approaches enable volunteers to generate redundant independent geoinformation by digitising Earth observation imagery. We face the challenge of mapping the complex gully outlines integrating multi-user contributions of the same gully network. Comparing Sentinel 2, Bing Aerial, and unoccupied aerial vehicle orthophoto base maps, we examine the volunteered geographic information process and multi-contribution integration using Kalman filtering and machine learning to segment a gully border in a remote area in northwestern Namibia. The Kalman filtering integrates the different lines finding a smoothed solution, and a Random Forest model is used to identify mapping conditions and terrain features as key predictors for evaluating contributors' digitising quality. Assessing results with expert-based reference data, we identify ten contributions as optimal, yielding root mean square distance values of 19.1 m, 15.9 m and 16.6 m, and variability of 2.0 m, 4.2 m and 3.8 m (root mean square distance standard deviation) for Sentinel 2, Bing Aerial, and unoccupied aerial vehicle orthophoto, respectively. Eliminating the lowest performing contributions for Sentinel 2 using a Random Forest regression-based quality indicator improves the accuracy by up to 35% in the root mean square distance compared to a random selection, and up to 54% compared to a supervised remote sensing classification. Results for Sentinel 2 show that low slope, low terrain ruggedness index, and high normalised difference vegetation index values are correlated to high spatial mapping deviations, with Pearson correlation coefficients of −0.61, −0.5, and 0.18, respectively. Our approach is a powerful alternative for authoritative mapping of morphologically complex environmental phenomena and can provide independent reference data for supervised automatic remote sensing analysis. 
700 1 |a Anders, Katharina  |d 1990-  |e VerfasserIn  |0 (DE-588)1128842580  |0 (DE-627)883601109  |0 (DE-576)48610298X  |4 aut 
700 1 |a Ajayi, Oluibukun  |e VerfasserIn  |4 aut 
700 1 |a Bubenzer, Olaf  |d 1964-  |e VerfasserIn  |0 (DE-588)173301495  |0 (DE-627)698219147  |0 (DE-576)181476576  |4 aut 
700 1 |a Höfle, Bernhard  |e VerfasserIn  |0 (DE-588)1019895403  |0 (DE-627)691049297  |0 (DE-576)358986753  |4 aut 
773 0 8 |i Enthalten in  |t ISPRS open journal of photogrammetry and remote sensing  |d Amsterdam : Elsevier, 2021  |g 12(2024) vom: Apr., Artikel-ID 100059, Seite 1-15  |h Online-Ressource  |w (DE-627)1786048418  |w (DE-600)3106021-3  |x 2667-3932  |7 nnas  |a Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning 
773 1 8 |g volume:12  |g year:2024  |g month:04  |g elocationid:100059  |g pages:1-15  |g extent:15  |a Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning 
787 0 8 |i Forschungsdaten  |a Vallejo Orti, Miguel, 1983 -   |t Integrating VGI contributions for gully mapping using Kalman filter and machine learning  |d Heidelberg : Universität, 2024  |h 1 Online-Ressource (7 Files)  |w (DE-627)1888406216 
856 4 0 |u https://doi.org/10.1016/j.ophoto.2024.100059  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2667393224000024?via%3Dihub  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240215 
993 |a Article 
994 |a 2024 
998 |g 1019895403  |a Höfle, Bernhard  |m 1019895403:Höfle, Bernhard  |d 120000  |d 120700  |e 120000PH1019895403  |e 120700PH1019895403  |k 0/120000/  |k 1/120000/120700/  |p 5  |y j 
998 |g 173301495  |a Bubenzer, Olaf  |m 173301495:Bubenzer, Olaf  |d 120000  |d 120700  |e 120000PB173301495  |e 120700PB173301495  |k 0/120000/  |k 1/120000/120700/  |p 4 
998 |g 1128842580  |a Anders, Katharina  |m 1128842580:Anders, Katharina  |d 120000  |d 120700  |e 120000PA1128842580  |e 120700PA1128842580  |k 0/120000/  |k 1/120000/120700/  |p 2 
998 |g 1192770056  |a Vallejo Orti, Miguel  |m 1192770056:Vallejo Orti, Miguel  |p 1  |x j 
999 |a KXP-PPN1880834146  |e 448463256X 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1880834146"],"doi":["10.1016/j.ophoto.2024.100059"]},"language":["eng"],"origin":[{"dateIssuedDisp":"April 2024","dateIssuedKey":"2024"}],"relHost":[{"name":{"displayForm":["International Society for Photogrammetry and Remote Sensing"]},"pubHistory":["Volume 1 (October 2021)-"],"recId":"1786048418","disp":"Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learningISPRS open journal of photogrammetry and remote sensing","titleAlt":[{"title":"IOJPRS"}],"title":[{"title_sort":"ISPRS open journal of photogrammetry and remote sensing","title":"ISPRS open journal of photogrammetry and remote sensing","subtitle":"IOJPRS"}],"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"12","extent":"15","year":"2024","text":"12(2024) vom: Apr., Artikel-ID 100059, Seite 1-15","pages":"1-15"},"origin":[{"publisher":"Elsevier","publisherPlace":"Amsterdam","dateIssuedDisp":"[2021]-"}],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"eki":["1786048418"],"zdb":["3106021-3"],"issn":["2667-3932"]},"corporate":[{"role":"isb","display":"International Society for Photogrammetry and Remote Sensing"}]}],"physDesc":[{"extent":"15 S."}],"person":[{"role":"aut","family":"Vallejo Orti","display":"Vallejo Orti, Miguel","given":"Miguel"},{"role":"aut","family":"Anders","display":"Anders, Katharina","given":"Katharina"},{"family":"Ajayi","display":"Ajayi, Oluibukun","given":"Oluibukun","role":"aut"},{"role":"aut","display":"Bubenzer, Olaf","family":"Bubenzer","given":"Olaf"},{"given":"Bernhard","family":"Höfle","display":"Höfle, Bernhard","role":"aut"}],"title":[{"title":"Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning","title_sort":"Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning"}],"recId":"1880834146","note":["Online veröffentlicht: 10. Februar 2024","Gesehen am 26.02.2024"],"name":{"displayForm":["Miguel Vallejo, Katharina Anders, Oluibukun Ajayi, Olaf Bubenzer, Bernhard Höfle"]}} 
SRT |a VALLEJOORTINTEGRATIN2024