Peculiar differences between two copper complexes containing similar redox-active ligands: density functional and multiconfigurational calculations

Transition metal complexes featuring redox-active ligands often exhibit multiple redox states, influenced by the interplay between the metal center and the ligand. This study delves into the electronic structures of two mononuclear complexes of copper with two similar redox-active urea azine ligands...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gerhards, Luca (VerfasserIn) , Werr, Marco (VerfasserIn) , Hübner, Olaf (VerfasserIn) , Solov’yov, Ilia A. (VerfasserIn) , Himmel, Hans-Jörg (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 January 2024
In: Inorganic chemistry
Year: 2024, Jahrgang: 63, Heft: 2, Pages: 961-975
ISSN:1520-510X
DOI:10.1021/acs.inorgchem.3c02949
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1021/acs.inorgchem.3c02949
Verlag, kostenfrei, Volltext: https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c02949
Volltext
Verfasserangaben:Luca Gerhards, Marco Werr, Olaf Hübner, Ilia A. Solov’yov, and Hans-Jörg Himmel
Beschreibung
Zusammenfassung:Transition metal complexes featuring redox-active ligands often exhibit multiple redox states, influenced by the interplay between the metal center and the ligand. This study delves into the electronic structures of two mononuclear complexes of copper with two similar redox-active urea azine ligands. The ligands differ by the replacement of an NCH3 moiety by an S atom in the ligand backbone. Experimental analysis yields pronounced electronic structural disparities between these complexes, observable in both the solution and solid phases. Conventional quantum chemical methods, such as density functional theory using different functionals (B3LYP, TPSSh, and CAM-B3LYP), remain inadequate to rationalize the observed spectroscopic anomalies. However, a multiconfigurational approach elucidates the disparate behaviors of these complexes. Multireference perturbation theory, based on complete active space self-consistent field computations, identifies Cu(I) in the case of the complex with the NCH3 containing ligands and a state with substantial Cu(II) contributions in the case of the complex with the S atom containing ligands. In contrast, DFT indicates Cu(I) in both scenarios.
Beschreibung:Online verfügbar: 29. Dezember 2023
Gesehen am 21.02.2024
Beschreibung:Online Resource
ISSN:1520-510X
DOI:10.1021/acs.inorgchem.3c02949