Greybox: a hybrid algorithm for direct estimation of tracer kinetic parameters from undersampled DCE-MRI data

Background: A variety of deep learning-based and iterative approaches are available to predict Tracer Kinetic (TK) parameters from fully sampled or undersampled dynamic contrast-enhanced (DCE) MRI data. However, both the methods offer distinct benefits and drawbacks. Purpose To propose a hybrid algo...

Full description

Saved in:
Bibliographic Details
Main Authors: Rastogi, Aditya (Author) , Yalavarthy, Phaneendra (Author)
Format: Article (Journal)
Language:English
Published: 12 January 2024
In: Medical physics
Year: 2024, Volume: 51, Issue: 7, Pages: 4838-4858
ISSN:2473-4209
DOI:10.1002/mp.16935
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/mp.16935
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.16935
Get full text
Author Notes:Aditya Rastogi, Phaneendra Kumar Yalavarthy

MARC

LEADER 00000caa a22000002c 4500
001 1881438961
003 DE-627
005 20241209121323.0
007 cr uuu---uuuuu
008 240222s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/mp.16935  |2 doi 
035 |a (DE-627)1881438961 
035 |a (DE-599)KXP1881438961 
035 |a (OCoLC)1425199921 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Rastogi, Aditya  |e VerfasserIn  |0 (DE-588)1303198118  |0 (DE-627)1860132634  |4 aut 
245 1 0 |a Greybox  |b a hybrid algorithm for direct estimation of tracer kinetic parameters from undersampled DCE-MRI data  |c Aditya Rastogi, Phaneendra Kumar Yalavarthy 
264 1 |c 12 January 2024 
300 |b Illustrationen 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.02.2024 
520 |a Background: A variety of deep learning-based and iterative approaches are available to predict Tracer Kinetic (TK) parameters from fully sampled or undersampled dynamic contrast-enhanced (DCE) MRI data. However, both the methods offer distinct benefits and drawbacks. Purpose To propose a hybrid algorithm (named as ‘Greybox'), using both model- as well as DL-based, for solving a multi-parametric non-linear inverse problem of directly estimating TK parameters from undersampled DCE MRI data, which is invariant to undersampling rate. Methods: The proposed algorithm was inspired by plug-and-play algorithms used for solving linear inverse imaging problems. This technique was tested for its effectiveness in solving the nonlinear ill-posed inverse problem of generating 3D TK parameter maps from four-dimensional (4D; Spatial + Temporal) retrospectively undersampled k-space data. The algorithm learns a deep learning-based prior using UNET to estimate the Ktrans\mathbf K_trans\ and Vp\mathbf V_p\ parameters based on the Patlak pharmacokinetic model, and this trained prior was utilized to estimate the TK parameter maps using an iterative gradient-based optimization scheme. Unlike the existing DL models, this network is invariant to the undersampling rate of the input data. The proposed method was compared with the total variation-based direct reconstruction technique on brain, breast, and prostate DCE-MRI datasets for various undersampling rates using the Radial Golden Angle (RGA) scheme. For the breast dataset, an indirect estimation using the Fast Composite Splitting algorithm was utilized for comparison. Undersampling rates of 8× , 12× and 20× were used for the experiments, and the results were compared using the PSNR and SSIM as metrics. For the breast dataset of 10 patients, data from four patients were utilized for training (1032 samples), two for validation (752 samples), and the entire volume of four patients for testing. Similarly, for the prostate dataset of 18 patients, 10 patients were utilized for training (720 samples), five for validation (216 samples), and the whole volume of three patients for testing. For the brain dataset of nineteen patients, ten patients were used for training (3152 samples), five for validation (1168 samples), and the whole volume of four patients for testing. Statistical tests were also conducted to assess the significance of the improvement in performance. Results: The experiments showed that the proposed Greybox performs significantly better than other direct reconstruction methods. The proposed algorithm improved the estimated Ktrans\mathbf K_trans\ and Vp\mathbf V_p\ in terms of the peak signal-to-noise ratio by up to 3 dB compared to other standard reconstruction methods. Conclusion: The proposed hybrid reconstruction algorithm, Greybox, can provide state-of-the-art performance in solving the nonlinear inverse problem of DCE-MRI. This is also the first of its kind to utilize convolutional neural network-based encodings as part of the plug-and-play priors to improve the performance of the reconstruction algorithm. 
650 4 |a AIF 
650 4 |a compressive sensing 
650 4 |a DCE-MRI 
650 4 |a Fast-MRI 
650 4 |a Ktrans\mathbf K_trans 
650 4 |a quantitative imaging 
650 4 |a Vp\mathbf V_p 
700 1 |a Yalavarthy, Phaneendra  |e VerfasserIn  |0 (DE-588)1321339666  |0 (DE-627)1881440281  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 51(2024), 7, Seite 4838-4858  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a Greybox a hybrid algorithm for direct estimation of tracer kinetic parameters from undersampled DCE-MRI data 
773 1 8 |g volume:51  |g year:2024  |g number:7  |g pages:4838-4858  |g extent:21  |a Greybox a hybrid algorithm for direct estimation of tracer kinetic parameters from undersampled DCE-MRI data 
856 4 0 |u https://doi.org/10.1002/mp.16935  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.16935  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240222 
993 |a Article 
994 |a 2024 
998 |g 1303198118  |a Rastogi, Aditya  |m 1303198118:Rastogi, Aditya  |d 910000  |d 911100  |e 910000PR1303198118  |e 911100PR1303198118  |k 0/910000/  |k 1/910000/911100/  |p 1  |x j 
999 |a KXP-PPN1881438961  |e 4490068557 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 22.02.2024"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1881438961","language":["eng"],"title":[{"title_sort":"Greybox","subtitle":"a hybrid algorithm for direct estimation of tracer kinetic parameters from undersampled DCE-MRI data","title":"Greybox"}],"person":[{"family":"Rastogi","given":"Aditya","roleDisplay":"VerfasserIn","display":"Rastogi, Aditya","role":"aut"},{"display":"Yalavarthy, Phaneendra","roleDisplay":"VerfasserIn","role":"aut","family":"Yalavarthy","given":"Phaneendra"}],"physDesc":[{"noteIll":"Illustrationen","extent":"21 S."}],"relHost":[{"disp":"Greybox a hybrid algorithm for direct estimation of tracer kinetic parameters from undersampled DCE-MRI dataMedical physics","note":["Gesehen am 01.08.2025"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"265784867","language":["eng"],"pubHistory":["1.1974 -"],"titleAlt":[{"title":"Medical physics online"}],"part":{"year":"2024","issue":"7","pages":"4838-4858","text":"51(2024), 7, Seite 4838-4858","volume":"51","extent":"21"},"title":[{"title":"Medical physics","title_sort":"Medical physics"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]},"origin":[{"publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY","publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]","dateIssuedKey":"1974","dateIssuedDisp":"1974-"}],"id":{"issn":["2473-4209","1522-8541"],"zdb":["1466421-5"],"eki":["265784867"]}}],"origin":[{"dateIssuedDisp":"12 January 2024","dateIssuedKey":"2024"}],"id":{"eki":["1881438961"],"doi":["10.1002/mp.16935"]},"name":{"displayForm":["Aditya Rastogi, Phaneendra Kumar Yalavarthy"]}} 
SRT |a RASTOGIADIGREYBOX1220