Individualizing deep dynamic models for psychological resilience data

Deep learning approaches can uncover complex patterns in data. In particular, variational autoencoders achieve this by a non-linear mapping of data into a low-dimensional latent space. Motivated by an application to psychological resilience in the Mainz Resilience Project, which features intermitten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Köber, Göran (VerfasserIn) , Pooseh, Shakoor (VerfasserIn) , Engen, Haakon G. (VerfasserIn) , Chmitorz, Andrea (VerfasserIn) , Kampa, Miriam (VerfasserIn) , Schick, Anita (VerfasserIn) , Sebastian, Alexandra (VerfasserIn) , Tüscher, Oliver (VerfasserIn) , Wessa, Michèle (VerfasserIn) , Yuen, Kenneth S. L. (VerfasserIn) , Walter, Henrik (VerfasserIn) , Kalisch, Raffael (VerfasserIn) , Timmer, Jens (VerfasserIn) , Binder, Harald (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 May 2022
In: Scientific reports
Year: 2022, Jahrgang: 12, Pages: 1-10
ISSN:2045-2322
DOI:10.1038/s41598-022-11650-6
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41598-022-11650-6
Verlag, kostenfrei, Volltext: http://www.nature.com/articles/s41598-022-11650-6
Volltext
Verfasserangaben:Göran Köber, Shakoor Pooseh, Haakon Engen, Andrea Chmitorz, Miriam Kampa, Anita Schick, Alexandra Sebastian, Oliver Tüscher, Michèle Wessa, Kenneth S.L. Yuen, Henrik Walter, Raffael Kalisch, Jens Timmer and Harald Binder

MARC

LEADER 00000caa a2200000 c 4500
001 1881570894
003 DE-627
005 20250116005408.0
007 cr uuu---uuuuu
008 240226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-022-11650-6  |2 doi 
035 |a (DE-627)1881570894 
035 |a (DE-599)KXP1881570894 
035 |a (OCoLC)1425215393 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Köber, Göran  |e VerfasserIn  |0 (DE-588)1183940173  |0 (DE-627)1663413908  |4 aut 
245 1 0 |a Individualizing deep dynamic models for psychological resilience data  |c Göran Köber, Shakoor Pooseh, Haakon Engen, Andrea Chmitorz, Miriam Kampa, Anita Schick, Alexandra Sebastian, Oliver Tüscher, Michèle Wessa, Kenneth S.L. Yuen, Henrik Walter, Raffael Kalisch, Jens Timmer and Harald Binder 
264 1 |c 16 May 2022 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.02.2024 
520 |a Deep learning approaches can uncover complex patterns in data. In particular, variational autoencoders achieve this by a non-linear mapping of data into a low-dimensional latent space. Motivated by an application to psychological resilience in the Mainz Resilience Project, which features intermittent longitudinal measurements of stressors and mental health, we propose an approach for individualized, dynamic modeling in this latent space. Specifically, we utilize ordinary differential equations (ODEs) and develop a novel technique for obtaining person-specific ODE parameters even in settings with a rather small number of individuals and observations, incomplete data, and a differing number of observations per individual. This technique allows us to subsequently investigate individual reactions to stimuli, such as the mental health impact of stressors. A potentially large number of baseline characteristics can then be linked to this individual response by regularized regression, e.g., for identifying resilience factors. Thus, our new method provides a way of connecting different kinds of complex longitudinal and baseline measures via individualized, dynamic models. The promising results obtained in the exemplary resilience application indicate that our proposal for dynamic deep learning might also be more generally useful for other application domains. 
650 4 |a Mathematics and computing 
650 4 |a Psychology 
700 1 |8 1\p  |a Pooseh, Shakoor  |e VerfasserIn  |0 (DE-588)1075478235  |0 (DE-627)833304755  |0 (DE-576)443499691  |4 aut 
700 1 |8 2\p  |a Engen, Haakon G.  |d 1982-  |e VerfasserIn  |0 (DE-588)1128826399  |0 (DE-627)883576686  |0 (DE-576)486081001  |4 aut 
700 1 |a Chmitorz, Andrea  |e VerfasserIn  |4 aut 
700 1 |8 3\p  |a Kampa, Miriam  |d 1986-  |e VerfasserIn  |0 (DE-588)1172382913  |0 (DE-627)104117649X  |0 (DE-576)514595558  |4 aut 
700 1 |a Schick, Anita  |d 1984-  |e VerfasserIn  |0 (DE-588)103862262X  |0 (DE-627)766246566  |0 (DE-576)259635510  |4 aut 
700 1 |8 4\p  |a Sebastian, Alexandra  |e VerfasserIn  |0 (DE-588)1038497906  |0 (DE-627)75763849X  |0 (DE-576)39251057X  |4 aut 
700 1 |8 5\p  |a Tüscher, Oliver  |d 1971-  |e VerfasserIn  |0 (DE-588)123703425  |0 (DE-627)706401905  |0 (DE-576)293834830  |4 aut 
700 1 |8 6\p  |a Wessa, Michèle  |d 1975-  |e VerfasserIn  |0 (DE-588)129213438  |0 (DE-627)391015907  |0 (DE-576)297542680  |4 aut 
700 1 |8 7\p  |a Yuen, Kenneth S. L.  |e VerfasserIn  |0 (DE-588)1027830366  |0 (DE-627)729876780  |0 (DE-576)375354786  |4 aut 
700 1 |8 8\p  |a Walter, Henrik  |d 1962-  |e VerfasserIn  |0 (DE-588)124827616  |0 (DE-627)366754548  |0 (DE-576)16977676X  |4 aut 
700 1 |8 9\p  |a Kalisch, Raffael  |d 1972-  |e VerfasserIn  |0 (DE-588)124232981  |0 (DE-627)085724742  |0 (DE-576)294079440  |4 aut 
700 1 |8 10\p  |a Timmer, Jens  |d 1964-  |e VerfasserIn  |0 (DE-588)114318549  |0 (DE-627)562988742  |0 (DE-576)289793092  |4 aut 
700 1 |8 11\p  |a Binder, Harald  |d 1976-  |e VerfasserIn  |0 (DE-588)131507982  |0 (DE-627)510156851  |0 (DE-576)253863007  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 12(2022), Artikel-ID 8061, Seite 1-10  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Individualizing deep dynamic models for psychological resilience data 
773 1 8 |g volume:12  |g year:2022  |g elocationid:8061  |g pages:1-10  |g extent:10  |a Individualizing deep dynamic models for psychological resilience data 
856 4 0 |u https://doi.org/10.1038/s41598-022-11650-6  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://www.nature.com/articles/s41598-022-11650-6  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 3\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 4\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 5\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 6\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 7\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 8\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 9\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 10\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 11\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20240226 
993 |a Article 
994 |a 2022 
998 |g 103862262X  |a Schick, Anita  |m 103862262X:Schick, Anita  |d 60000  |e 60000PS103862262X  |k 0/60000/  |p 6 
999 |a KXP-PPN1881570894  |e 4491085676 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Göran Köber, Shakoor Pooseh, Haakon Engen, Andrea Chmitorz, Miriam Kampa, Anita Schick, Alexandra Sebastian, Oliver Tüscher, Michèle Wessa, Kenneth S.L. Yuen, Henrik Walter, Raffael Kalisch, Jens Timmer and Harald Binder"]},"person":[{"given":"Göran","role":"aut","display":"Köber, Göran","family":"Köber"},{"display":"Pooseh, Shakoor","role":"aut","given":"Shakoor","family":"Pooseh"},{"family":"Engen","display":"Engen, Haakon G.","given":"Haakon G.","role":"aut"},{"family":"Chmitorz","display":"Chmitorz, Andrea","role":"aut","given":"Andrea"},{"family":"Kampa","given":"Miriam","role":"aut","display":"Kampa, Miriam"},{"family":"Schick","display":"Schick, Anita","role":"aut","given":"Anita"},{"display":"Sebastian, Alexandra","role":"aut","given":"Alexandra","family":"Sebastian"},{"family":"Tüscher","role":"aut","given":"Oliver","display":"Tüscher, Oliver"},{"family":"Wessa","given":"Michèle","role":"aut","display":"Wessa, Michèle"},{"family":"Yuen","display":"Yuen, Kenneth S. L.","role":"aut","given":"Kenneth S. L."},{"role":"aut","given":"Henrik","display":"Walter, Henrik","family":"Walter"},{"family":"Kalisch","role":"aut","given":"Raffael","display":"Kalisch, Raffael"},{"family":"Timmer","display":"Timmer, Jens","given":"Jens","role":"aut"},{"display":"Binder, Harald","role":"aut","given":"Harald","family":"Binder"}],"recId":"1881570894","origin":[{"dateIssuedDisp":"16 May 2022","dateIssuedKey":"2022"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 26.02.2024"],"relHost":[{"disp":"Individualizing deep dynamic models for psychological resilience dataScientific reports","physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["2045-2322"],"zdb":["2615211-3"],"eki":["663366712"]},"note":["Gesehen am 12.07.24"],"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"publisher":"Springer Nature ; Nature Publishing Group","dateIssuedDisp":"2011-","dateIssuedKey":"2011","publisherPlace":"[London] ; London"}],"recId":"663366712","title":[{"title_sort":"Scientific reports","title":"Scientific reports"}],"language":["eng"],"part":{"extent":"10","pages":"1-10","text":"12(2022), Artikel-ID 8061, Seite 1-10","year":"2022","volume":"12"},"pubHistory":["1, article number 1 (2011)-"]}],"physDesc":[{"extent":"10 S."}],"id":{"doi":["10.1038/s41598-022-11650-6"],"eki":["1881570894"]},"language":["eng"],"title":[{"title":"Individualizing deep dynamic models for psychological resilience data","title_sort":"Individualizing deep dynamic models for psychological resilience data"}]} 
SRT |a KOEBERGOERINDIVIDUAL1620