Deep learning detection of melanoma metastases in lymph nodes

Background - In melanoma patients, surgical excision of the first draining lymph node, the sentinel lymph node (SLN), is a routine procedure to evaluate lymphogenic metastases. Metastasis detection by histopathological analysis assesses multiple tissue levels with hematoxylin and eosin and immunohis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jansen, Philipp (VerfasserIn) , Baguer, Daniel Otero (VerfasserIn) , Duschner, Nicole (VerfasserIn) , Le'Clerc Arrastia, Jean (VerfasserIn) , Schmidt, Maximillian (VerfasserIn) , Landsberg, Jennifer Caroline (VerfasserIn) , Wenzel, Jörg (VerfasserIn) , Schadendorf, Dirk (VerfasserIn) , Hadaschik, Eva (VerfasserIn) , Maass, Peter (VerfasserIn) , Schaller, Jörg (VerfasserIn) , Griewank, Klaus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: July 2023
In: European journal of cancer
Year: 2023, Jahrgang: 188, Pages: 161-170
ISSN:1879-0852
DOI:10.1016/j.ejca.2023.04.023
Online-Zugang:Resolving-System, lizenzpflichtig: https://doi.org/10.1016/j.ejca.2023.04.023
Verlag, lizenzpflichtig: https://www.sciencedirect.com/science/article/pii/S0959804923002241?via%3Dihub
Volltext
Verfasserangaben:Philipp Jansen, Daniel Otero Baguer, Nicole Duschner, Jean Le’Clerc Arrastia,Maximilian Schmidt, Jennifer Landsberg, Jörg Wenzel, Dirk Schadendorf, Eva Hadaschik, Peter Maass, Jörg Schaller, Klaus Georg Griewank

MARC

LEADER 00000caa a2200000 c 4500
001 1881617696
003 DE-627
005 20241205140428.0
007 cr uuu---uuuuu
008 240226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2023.04.023  |2 doi 
035 |a (DE-627)1881617696 
035 |a (DE-599)KXP1881617696 
035 |a (OCoLC)1475287041 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Jansen, Philipp  |e VerfasserIn  |0 (DE-588)1069849596  |0 (DE-627)822852616  |0 (DE-576)429543476  |4 aut 
245 1 0 |a Deep learning detection of melanoma metastases in lymph nodes  |c Philipp Jansen, Daniel Otero Baguer, Nicole Duschner, Jean Le’Clerc Arrastia,Maximilian Schmidt, Jennifer Landsberg, Jörg Wenzel, Dirk Schadendorf, Eva Hadaschik, Peter Maass, Jörg Schaller, Klaus Georg Griewank 
264 1 |c July 2023 
300 |b Illustrationen, Diagramme 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 29. April 2023, Artikelversion: 23. Mai 2023 
500 |a Gesehen am 26.02.2024 
500 |a Available online: 29 April 2023 
520 |a Background - In melanoma patients, surgical excision of the first draining lymph node, the sentinel lymph node (SLN), is a routine procedure to evaluate lymphogenic metastases. Metastasis detection by histopathological analysis assesses multiple tissue levels with hematoxylin and eosin and immunohistochemically stained glass slides. Considering the amount of tissue to analyze, the detection of metastasis can be highly time-consuming for pathologists. The application of artificial intelligence in the clinical routine has constantly increased over the past few years. Methods - IIn this multi-center study, a deep learning method was established on histological tissue sections of sentinel lymph nodes collected from the clinical routine. The algorithm was trained to highlight potential melanoma metastases for further review by pathologists, without relying on supplementary immunohistochemical stainings (e.g. anti-S100, anti-MelanA). Results - The established method was able to detect the existence of metastasis on individual tissue cuts with an area under the curve of 0.9630 and 0.9856 respectively on two test cohorts from different laboratories. The method was able to accurately identify tumour deposits>0.1 mm and, by automatic tumour diameter measurement, classify these into 0.1 mm to −1.0 mm and>1.0 mm groups, thus identifying and classifying metastasis currently relevant for assessing prognosis and stratifying treatment. Conclusions - Our results demonstrate that AI-based SLN melanoma metastasis detection has great potential and could become a routinely applied aid for pathologists. Our current study focused on assessing established parameters; however, larger future AI-based studies could identify novel biomarkers potentially further improving SLN-based prognostic and therapeutic predictions for affected patients. 
700 1 |a Baguer, Daniel Otero  |e VerfasserIn  |4 aut 
700 1 |a Duschner, Nicole  |e VerfasserIn  |4 aut 
700 1 |a Le'Clerc Arrastia, Jean  |e VerfasserIn  |4 aut 
700 1 |a Schmidt, Maximillian  |e VerfasserIn  |4 aut 
700 1 |a Landsberg, Jennifer Caroline  |d 1981-  |e VerfasserIn  |0 (DE-588)1015218555  |0 (DE-627)671485105  |0 (DE-576)352326077  |4 aut 
700 1 |a Wenzel, Jörg  |e VerfasserIn  |4 aut 
700 1 |a Schadendorf, Dirk  |d 1960-  |e VerfasserIn  |0 (DE-588)11142576X  |0 (DE-627)499566076  |0 (DE-576)289702275  |4 aut 
700 1 |a Hadaschik, Eva  |e VerfasserIn  |0 (DE-588)1054876916  |0 (DE-627)792376684  |0 (DE-576)410969842  |4 aut 
700 1 |a Maass, Peter  |e VerfasserIn  |4 aut 
700 1 |a Schaller, Jörg  |e VerfasserIn  |4 aut 
700 1 |a Griewank, Klaus  |d 1978-  |e VerfasserIn  |0 (DE-588)133004112  |0 (DE-627)53008497X  |0 (DE-576)299558223  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 188(2023) vom: Juli, Seite 161-170  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Deep learning detection of melanoma metastases in lymph nodes 
773 1 8 |g volume:188  |g year:2023  |g month:07  |g pages:161-170  |g extent:10  |a Deep learning detection of melanoma metastases in lymph nodes 
856 4 0 |u https://doi.org/10.1016/j.ejca.2023.04.023  |x Resolving-System  |z lizenzpflichtig 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0959804923002241?via%3Dihub  |x Verlag  |z lizenzpflichtig 
951 |a AR 
992 |a 20240923 
993 |a Article 
994 |a 2023 
998 |g 1054876916  |a Hadaschik, Eva  |m 1054876916:Hadaschik, Eva  |d 910000  |d 911300  |e 910000PH1054876916  |e 911300PH1054876916  |k 0/910000/  |k 1/910000/911300/  |p 9 
998 |g 11142576X  |a Schadendorf, Dirk  |m 11142576X:Schadendorf, Dirk  |d 50000  |e 50000PS11142576X  |k 0/50000/  |p 8 
999 |a KXP-PPN1881617696  |e 4582674216 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Online verfügbar: 29. April 2023, Artikelversion: 23. Mai 2023","Gesehen am 26.02.2024","Available online: 29 April 2023"],"recId":"1881617696","name":{"displayForm":["Philipp Jansen, Daniel Otero Baguer, Nicole Duschner, Jean Le’Clerc Arrastia,Maximilian Schmidt, Jennifer Landsberg, Jörg Wenzel, Dirk Schadendorf, Eva Hadaschik, Peter Maass, Jörg Schaller, Klaus Georg Griewank"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"July 2023"}],"id":{"doi":["10.1016/j.ejca.2023.04.023"],"eki":["1881617696"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"relHost":[{"title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"titleAlt":[{"title":"EJC online"}],"part":{"text":"188(2023) vom: Juli, Seite 161-170","pages":"161-170","volume":"188","extent":"10","year":"2023"},"origin":[{"publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1992-","publisher":"Elsevier ; Pergamon Press","dateIssuedKey":"1992"}],"corporate":[{"role":"isb","display":"European Organization for Research on Treatment of Cancer"},{"role":"isb","display":"European Association for Cancer Research"},{"display":"European School of Oncology","role":"isb"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"id":{"zdb":["1468190-0"],"issn":["1879-0852"],"eki":["266883400"]},"pubHistory":["28.1992 -"],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"recId":"266883400","disp":"Deep learning detection of melanoma metastases in lymph nodesEuropean journal of cancer"}],"title":[{"title_sort":"Deep learning detection of melanoma metastases in lymph nodes","title":"Deep learning detection of melanoma metastases in lymph nodes"}],"person":[{"role":"aut","given":"Philipp","family":"Jansen","display":"Jansen, Philipp"},{"role":"aut","given":"Daniel Otero","family":"Baguer","display":"Baguer, Daniel Otero"},{"display":"Duschner, Nicole","family":"Duschner","given":"Nicole","role":"aut"},{"role":"aut","given":"Jean","display":"Le'Clerc Arrastia, Jean","family":"Le'Clerc Arrastia"},{"role":"aut","given":"Maximillian","family":"Schmidt","display":"Schmidt, Maximillian"},{"role":"aut","given":"Jennifer Caroline","display":"Landsberg, Jennifer Caroline","family":"Landsberg"},{"given":"Jörg","family":"Wenzel","display":"Wenzel, Jörg","role":"aut"},{"role":"aut","display":"Schadendorf, Dirk","family":"Schadendorf","given":"Dirk"},{"display":"Hadaschik, Eva","family":"Hadaschik","given":"Eva","role":"aut"},{"role":"aut","given":"Peter","family":"Maass","display":"Maass, Peter"},{"role":"aut","family":"Schaller","display":"Schaller, Jörg","given":"Jörg"},{"role":"aut","given":"Klaus","family":"Griewank","display":"Griewank, Klaus"}],"physDesc":[{"extent":"10 S.","noteIll":"Illustrationen, Diagramme"}]} 
SRT |a JANSENPHILDEEPLEARNI2023