A critical moment in machine learning in medicine: on reproducible and interpretable learning

Over the past two decades, advances in computational power and data availability combined with increased accessibility to pre-trained models have led to an exponential rise in machine learning (ML) publications. While ML may have the potential to transform healthcare, this sharp increase in ML resea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ciobanu-Caraus, Olga (VerfasserIn) , Aicher, Anatol (VerfasserIn) , Kernbach, Julius (VerfasserIn) , Regli, Luca (VerfasserIn) , Serra, Carlo (VerfasserIn) , Staartjes, Victor E. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 January 2024
In: Acta neurochirurgica
Year: 2024, Jahrgang: 166, Heft: 1, Pages: 1-7
ISSN:0942-0940
DOI:10.1007/s00701-024-05892-8
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00701-024-05892-8
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00701-024-05892-8
Volltext
Verfasserangaben:Olga Ciobanu-Caraus, Anatol Aicher, Julius M. Kernbach, Luca Regli, Carlo Serra, Victor E. Staartjes

MARC

LEADER 00000caa a2200000 c 4500
001 1882661591
003 DE-627
005 20240703150955.0
007 cr uuu---uuuuu
008 240306s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00701-024-05892-8  |2 doi 
035 |a (DE-627)1882661591 
035 |a (DE-599)KXP1882661591 
035 |a (OCoLC)1443644917 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Ciobanu-Caraus, Olga  |e VerfasserIn  |0 (DE-588)1322662991  |0 (DE-627)1882663276  |4 aut 
245 1 2 |a A critical moment in machine learning in medicine  |b on reproducible and interpretable learning  |c Olga Ciobanu-Caraus, Anatol Aicher, Julius M. Kernbach, Luca Regli, Carlo Serra, Victor E. Staartjes 
264 1 |c 16 January 2024 
300 |a 7 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.03.2024 
520 |a Over the past two decades, advances in computational power and data availability combined with increased accessibility to pre-trained models have led to an exponential rise in machine learning (ML) publications. While ML may have the potential to transform healthcare, this sharp increase in ML research output without focus on methodological rigor and standard reporting guidelines has fueled a reproducibility crisis. In addition, the rapidly growing complexity of these models compromises their interpretability, which currently impedes their successful and widespread clinical adoption. In medicine, where failure of such models may have severe implications for patients’ health, the high requirements for accuracy, robustness, and interpretability confront ML researchers with a unique set of challenges. In this review, we discuss the semantics of reproducibility and interpretability, as well as related issues and challenges, and outline possible solutions to counteracting the “black box”. To foster reproducibility, standard reporting guidelines need to be further developed and data or code sharing encouraged. Editors and reviewers may equally play a critical role by establishing high methodological standards and thus preventing the dissemination of low-quality ML publications. To foster interpretable learning, the use of simpler models more suitable for medical data can inform the clinician how results are generated based on input data. Model-agnostic explanation tools, sensitivity analysis, and hidden layer representations constitute further promising approaches to increase interpretability. Balancing model performance and interpretability are important to ensure clinical applicability. We have now reached a critical moment for ML in medicine, where addressing these issues and implementing appropriate solutions will be vital for the future evolution of the field. 
650 4 |a Interpretability 
650 4 |a Machine learning 
650 4 |a Methodology 
650 4 |a Reproducibility 
700 1 |a Aicher, Anatol  |e VerfasserIn  |4 aut 
700 1 |a Kernbach, Julius  |e VerfasserIn  |0 (DE-588)1198431008  |0 (DE-627)1680803743  |4 aut 
700 1 |a Regli, Luca  |d 1962-  |e VerfasserIn  |0 (DE-588)1089661908  |0 (DE-627)853427542  |0 (DE-576)460090577  |4 aut 
700 1 |a Serra, Carlo  |e VerfasserIn  |4 aut 
700 1 |a Staartjes, Victor E.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Acta neurochirurgica  |d Wien [u.a.] : Springer, 1950  |g 166(2024), 1, Artikel-ID 14, Seite 1-7  |h Online-Ressource  |w (DE-627)265508398  |w (DE-600)1464215-3  |w (DE-576)074889729  |x 0942-0940  |7 nnas  |a A critical moment in machine learning in medicine on reproducible and interpretable learning 
773 1 8 |g volume:166  |g year:2024  |g number:1  |g elocationid:14  |g pages:1-7  |g extent:7  |a A critical moment in machine learning in medicine on reproducible and interpretable learning 
856 4 0 |u https://doi.org/10.1007/s00701-024-05892-8  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s00701-024-05892-8  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240306 
993 |a Article 
994 |a 2024 
998 |g 1198431008  |a Kernbach, Julius  |m 1198431008:Kernbach, Julius  |d 910000  |d 911100  |e 910000PK1198431008  |e 911100PK1198431008  |k 0/910000/  |k 1/910000/911100/  |p 3 
999 |a KXP-PPN1882661591  |e 4496125218 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1950","publisher":"Springer","dateIssuedDisp":"1950-","publisherPlace":"Wien [u.a.]"}],"id":{"issn":["0942-0940"],"eki":["265508398"],"zdb":["1464215-3"]},"disp":"A critical moment in machine learning in medicine on reproducible and interpretable learningActa neurochirurgica","note":["Gesehen am 15.01.2025","Ab 2022 Fortsetzung der Druck-Ausgabe"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["ger","eng"],"recId":"265508398","pubHistory":["1.1950/51 -"],"part":{"extent":"7","volume":"166","text":"166(2024), 1, Artikel-ID 14, Seite 1-7","issue":"1","pages":"1-7","year":"2024"},"title":[{"title_sort":"Acta neurochirurgica","subtitle":"the European journal of neurosurgery","title":"Acta neurochirurgica"}]}],"physDesc":[{"extent":"7 S."}],"id":{"doi":["10.1007/s00701-024-05892-8"],"eki":["1882661591"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"16 January 2024"}],"name":{"displayForm":["Olga Ciobanu-Caraus, Anatol Aicher, Julius M. Kernbach, Luca Regli, Carlo Serra, Victor E. Staartjes"]},"recId":"1882661591","language":["eng"],"note":["Gesehen am 06.03.2024"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"A critical moment in machine learning in medicine","subtitle":"on reproducible and interpretable learning","title_sort":"critical moment in machine learning in medicine"}],"person":[{"given":"Olga","family":"Ciobanu-Caraus","role":"aut","roleDisplay":"VerfasserIn","display":"Ciobanu-Caraus, Olga"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Aicher, Anatol","given":"Anatol","family":"Aicher"},{"display":"Kernbach, Julius","roleDisplay":"VerfasserIn","role":"aut","family":"Kernbach","given":"Julius"},{"role":"aut","display":"Regli, Luca","roleDisplay":"VerfasserIn","given":"Luca","family":"Regli"},{"role":"aut","display":"Serra, Carlo","roleDisplay":"VerfasserIn","given":"Carlo","family":"Serra"},{"role":"aut","display":"Staartjes, Victor E.","roleDisplay":"VerfasserIn","given":"Victor E.","family":"Staartjes"}]} 
SRT |a CIOBANUCARCRITICALMO1620