ChatGPT’s performance in German OB/GYN exams: paving the way for AI-enhanced medical education and clinical practice

Background Chat Generative Pre-Trained Transformer (ChatGPT) is an artificial learning and large language model tool developed by OpenAI in 2022. It utilizes deep learning algorithms to process natural language and generate responses, which renders it suitable for conversational interfaces. ChatGPT&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Riedel, Maximilian (VerfasserIn) , Kaefinger, Katharina (VerfasserIn) , Stuehrenberg, Antonia (VerfasserIn) , Ritter, Viktoria (VerfasserIn) , Amann, Niklas (VerfasserIn) , Graf, Anna (VerfasserIn) , Recker, Florian (VerfasserIn) , Klein, Evelyn (VerfasserIn) , Kiechle, Marion (VerfasserIn) , Riedel, Fabian (VerfasserIn) , Meyer, Bastian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 December 2023
In: Frontiers in medicine
Year: 2023, Jahrgang: 10, Pages: 1-11
ISSN:2296-858X
DOI:10.3389/fmed.2023.1296615
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3389/fmed.2023.1296615
Verlag, lizenzpflichtig, Volltext: https://www.frontiersin.org/articles/10.3389/fmed.2023.1296615
Volltext
Verfasserangaben:Maximilian Riedel, Katharina Kaefinger, Antonia Stuehrenberg, Viktoria Ritter, Niklas Amann, Anna Graf, Florian Recker, Evelyn Klein, Marion Kiechle, Fabian Riedel and Bastian Meyer

MARC

LEADER 00000caa a2200000 c 4500
001 1882942663
003 DE-627
005 20240703151554.0
007 cr uuu---uuuuu
008 240308s2023 xx |||||o 00| ||eng c
024 7 |a 10.3389/fmed.2023.1296615  |2 doi 
035 |a (DE-627)1882942663 
035 |a (DE-599)KXP1882942663 
035 |a (OCoLC)1443645091 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Riedel, Maximilian  |e VerfasserIn  |0 (DE-588)1278491740  |0 (DE-627)1831410133  |4 aut 
245 1 0 |a ChatGPT’s performance in German OB/GYN exams  |b paving the way for AI-enhanced medical education and clinical practice  |c Maximilian Riedel, Katharina Kaefinger, Antonia Stuehrenberg, Viktoria Ritter, Niklas Amann, Anna Graf, Florian Recker, Evelyn Klein, Marion Kiechle, Fabian Riedel and Bastian Meyer 
264 1 |c 13 December 2023 
300 |b Illustrationen 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 08.03.2024 
520 |a Background Chat Generative Pre-Trained Transformer (ChatGPT) is an artificial learning and large language model tool developed by OpenAI in 2022. It utilizes deep learning algorithms to process natural language and generate responses, which renders it suitable for conversational interfaces. ChatGPT's potential to transform medical education and clinical practice is currently being explored, but its capabilities and limitations in this domain remain incompletely investigated. The present study aimed to assess ChatGPT's performance in medical knowledge competency for problem assessment in obstetrics and gynecology (OB/GYN). Methods Two datasets were established for analysis: questions (1) from OB/GYN course exams at a German university hospital and (2) from the German medical state licensing exams. In order to assess ChatGPT's performance, questions were entered into the chat interface, and responses were documented. A quantitative analysis compared ChatGPT's accuracy with that of medical students for different levels of difficulty and types of questions. Additionally, a qualitative analysis assessed the quality of ChatGPT's responses regarding ease of understanding, conciseness, accuracy, completeness, and relevance. Non-obvious insights generated by ChatGPT were evaluated, and a density index of insights was established in order to quantify the tool’s ability to provide students with relevant and concise medical knowledge. Results ChatGPT demonstrated consistent and comparable performance across both datasets. It provided correct responses at a rate comparable with that of medical students, thereby indicating its ability to handle a diverse spectrum of questions ranging from general knowledge to complex clinical case presentations. The tool’s accuracy was partly affected by question difficulty in the medical state exam dataset. Our qualitative assessment revealed that ChatGPT provided mostly accurate, complete, and relevant answers. ChatGPT additionally provided many non-obvious insights, especially in correctly answered questions, which indicates its potential for enhancing autonomous medical learning. Conclusion ChatGPT has promise as a supplementary tool in medical education and clinical practice. Its ability to provide accurate and insightful responses showcases its adaptability to complex clinical scenarios. As AI technologies continue to evolve, ChatGPT and similar tools may contribute to more efficient and personalized learning experiences and assistance for health care providers. 
650 4 |a artificial intelligence 
650 4 |a ChatGPT 
650 4 |a hat gelöscht: 
650 4 |a machine learning 
650 4 |a Obstetrics and Gynecology 
650 4 |a Students 
650 4 |a thereby fostering inclusivity and accessibility medical education 
700 1 |a Kaefinger, Katharina  |e VerfasserIn  |4 aut 
700 1 |a Stuehrenberg, Antonia  |e VerfasserIn  |4 aut 
700 1 |a Ritter, Viktoria  |e VerfasserIn  |4 aut 
700 1 |a Amann, Niklas  |e VerfasserIn  |4 aut 
700 1 |a Graf, Anna  |e VerfasserIn  |4 aut 
700 1 |a Recker, Florian  |e VerfasserIn  |4 aut 
700 1 |a Klein, Evelyn  |e VerfasserIn  |4 aut 
700 1 |a Kiechle, Marion  |e VerfasserIn  |4 aut 
700 1 |a Riedel, Fabian  |d 1987-  |e VerfasserIn  |0 (DE-588)1117048381  |0 (DE-627)870923951  |0 (DE-576)478697007  |4 aut 
700 1 |a Meyer, Bastian  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in medicine  |d Lausanne : Frontiers Media, 2014  |g 10(2023) vom: Dez., Artikel-ID 1296615, Seite 1-11  |h Online-Ressource  |w (DE-627)789482991  |w (DE-600)2775999-4  |w (DE-576)408729597  |x 2296-858X  |7 nnas  |a ChatGPT’s performance in German OB/GYN exams paving the way for AI-enhanced medical education and clinical practice 
773 1 8 |g volume:10  |g year:2023  |g month:12  |g elocationid:1296615  |g pages:1-11  |g extent:11  |a ChatGPT’s performance in German OB/GYN exams paving the way for AI-enhanced medical education and clinical practice 
856 4 0 |u https://doi.org/10.3389/fmed.2023.1296615  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fmed.2023.1296615  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240308 
993 |a Article 
994 |a 2023 
998 |g 1117048381  |a Riedel, Fabian  |m 1117048381:Riedel, Fabian  |d 910000  |d 910400  |e 910000PR1117048381  |e 910400PR1117048381  |k 0/910000/  |k 1/910000/910400/  |p 10 
999 |a KXP-PPN1882942663  |e 4497779602 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"noteIll":"Illustrationen","extent":"11 S."}],"relHost":[{"pubHistory":["2014 -"],"part":{"text":"10(2023) vom: Dez., Artikel-ID 1296615, Seite 1-11","volume":"10","extent":"11","year":"2023","pages":"1-11"},"titleAlt":[{"title":"FMED"},{"title":"Front. Med."}],"disp":"ChatGPT’s performance in German OB/GYN exams paving the way for AI-enhanced medical education and clinical practiceFrontiers in medicine","note":["Gesehen am 09.02.2021"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"recId":"789482991","title":[{"title_sort":"Frontiers in medicine","title":"Frontiers in medicine"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Lausanne","dateIssuedKey":"2014","publisher":"Frontiers Media","dateIssuedDisp":"2014-"}],"id":{"eki":["789482991"],"zdb":["2775999-4"],"issn":["2296-858X"]}}],"origin":[{"dateIssuedDisp":"13 December 2023","dateIssuedKey":"2023"}],"id":{"doi":["10.3389/fmed.2023.1296615"],"eki":["1882942663"]},"name":{"displayForm":["Maximilian Riedel, Katharina Kaefinger, Antonia Stuehrenberg, Viktoria Ritter, Niklas Amann, Anna Graf, Florian Recker, Evelyn Klein, Marion Kiechle, Fabian Riedel and Bastian Meyer"]},"note":["Gesehen am 08.03.2024"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1882942663","title":[{"title_sort":"ChatGPT’s performance in German OB/GYN exams","title":"ChatGPT’s performance in German OB/GYN exams","subtitle":"paving the way for AI-enhanced medical education and clinical practice"}],"person":[{"given":"Maximilian","family":"Riedel","role":"aut","display":"Riedel, Maximilian","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Kaefinger, Katharina","given":"Katharina","family":"Kaefinger"},{"roleDisplay":"VerfasserIn","display":"Stuehrenberg, Antonia","role":"aut","family":"Stuehrenberg","given":"Antonia"},{"display":"Ritter, Viktoria","roleDisplay":"VerfasserIn","role":"aut","family":"Ritter","given":"Viktoria"},{"display":"Amann, Niklas","roleDisplay":"VerfasserIn","role":"aut","family":"Amann","given":"Niklas"},{"given":"Anna","family":"Graf","role":"aut","roleDisplay":"VerfasserIn","display":"Graf, Anna"},{"family":"Recker","given":"Florian","display":"Recker, Florian","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Klein, Evelyn","role":"aut","family":"Klein","given":"Evelyn"},{"family":"Kiechle","given":"Marion","roleDisplay":"VerfasserIn","display":"Kiechle, Marion","role":"aut"},{"display":"Riedel, Fabian","roleDisplay":"VerfasserIn","role":"aut","family":"Riedel","given":"Fabian"},{"given":"Bastian","family":"Meyer","role":"aut","roleDisplay":"VerfasserIn","display":"Meyer, Bastian"}]} 
SRT |a RIEDELMAXICHATGPTSPE1320