Reducing windmill artifacts in clinical spiral CT using a deep learning-based projection raw data upsampling: method and robustness evaluation

Background Multislice spiral computed tomography (MSCT) requires an interpolation between adjacent detector rows during backprojection. Not satisfying the Nyquist sampling condition along the z-axis results in aliasing effects, also known as windmill artifacts. These image distortions are characteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Magonov, Jan (VerfasserIn) , Maier, Joscha (VerfasserIn) , Erath, Julien (VerfasserIn) , Sunnegårdh, Johan (VerfasserIn) , Fournié, Eric (VerfasserIn) , Stierstorfer, Karl (VerfasserIn) , Kachelrieß, Marc (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 January 2024
Ausgabe:Online version of record before inclusion in an issue
In: Medical physics
Year: 2024, Jahrgang: 51, Heft: 3, Pages: 1597-1616
ISSN:2473-4209
DOI:10.1002/mp.16938
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/mp.16938
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.16938
Volltext
Verfasserangaben:Jan Magonov, Joscha Maier, Julien Erath, Johan Sunnegårdh, Eric Fournié, Karl Stierstorfer, Marc Kachelrieß

MARC

LEADER 00000caa a22000002c 4500
001 1883061423
003 DE-627
005 20241209121411.0
007 cr uuu---uuuuu
008 240311s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/mp.16938  |2 doi 
035 |a (DE-627)1883061423 
035 |a (DE-599)KXP1883061423 
035 |a (OCoLC)1443645186 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Magonov, Jan  |e VerfasserIn  |0 (DE-588)1323076379  |0 (DE-627)1883062934  |4 aut 
245 1 0 |a Reducing windmill artifacts in clinical spiral CT using a deep learning-based projection raw data upsampling  |b method and robustness evaluation  |c Jan Magonov, Joscha Maier, Julien Erath, Johan Sunnegårdh, Eric Fournié, Karl Stierstorfer, Marc Kachelrieß 
250 |a Online version of record before inclusion in an issue 
264 1 |c 16 January 2024 
300 |b Illustrationen 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.03.2024 
520 |a Background Multislice spiral computed tomography (MSCT) requires an interpolation between adjacent detector rows during backprojection. Not satisfying the Nyquist sampling condition along the z-axis results in aliasing effects, also known as windmill artifacts. These image distortions are characterized by bright streaks diverging from high contrast structures. Purpose The z-flying focal spot (zFFS) is a well-established hardware-based solution that aims to double the sampling rate in longitudinal direction and therefore reduce aliasing artifacts. However, given the technical complexity of the zFFS, this work proposes a deep learning-based approach as an alternative solution. Methods We propose a supervised learning approach to perform a mapping between input projections and the corresponding rows required for double sampling in the z-direction. We present a comprehensive evaluation using both a clinical dataset obtained using raw data from 40 real patient scans acquired with zFFS and a synthetic dataset consisting of 100 simulated spiral scans using a phantom specifically designed for our problem. For the clinical dataset, we utilized 32 scans as training set and 8 scans as validation set, whereas for the synthetic dataset, we used 80 scans for training and 20 scans for validation purposes. Both qualitative and quantitative assessments are conducted on a test set consisting of nine real patient scans and six phantom measurements to validate the performance of our approach. A simulation study was performed to investigate the robustness against different scan configurations in terms of detector collimation and pitch value. Results In the quantitative comparison based on clinical patient scans from the test set, all network configurations show an improvement in the root mean square error (RMSE) of approximately 20% compared to neglecting the doubled longitudinal sampling by the zFFS. The results of the qualitative analysis indicate that both clinical and synthetic training data can reduce windmill artifacts through the application of a correspondingly trained network. Together with the qualitative results from the test set phantom measurements it is emphasized that a training of our method with synthetic data resulted in superior performance in windmill artifact reduction. Conclusions Deep learning-based raw data interpolation has the potential to enhance the sampling in z-direction and thus minimize aliasing effects, as it is the case with the zFFS. Especially a training with synthetic data showed promising results. While it may not outperform zFFS, our method represents a beneficial solution for CT scanners lacking the necessary hardware components for zFFS. 
650 4 |a clinical spiral CT 
650 4 |a computed tomography 
650 4 |a convolutional neural network 
650 4 |a deep learning 
650 4 |a image quality 
650 4 |a medical imaging 
650 4 |a projection rawdata upsampling 
650 4 |a windmill artifact reduction 
650 4 |a z-flying focal spot 
700 1 |a Maier, Joscha  |d 1988-  |e VerfasserIn  |0 (DE-588)1185600868  |0 (DE-627)1664987231  |4 aut 
700 1 |a Erath, Julien  |d 1990-  |e VerfasserIn  |0 (DE-588)1279613289  |0 (DE-627)1832747050  |4 aut 
700 1 |a Sunnegårdh, Johan  |e VerfasserIn  |4 aut 
700 1 |a Fournié, Eric  |e VerfasserIn  |4 aut 
700 1 |a Stierstorfer, Karl  |e VerfasserIn  |4 aut 
700 1 |a Kachelrieß, Marc  |d 1969-  |e VerfasserIn  |0 (DE-588)120866544  |0 (DE-627)705049280  |0 (DE-576)292422725  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 51(2024), 3, Seite 1597-1616  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a Reducing windmill artifacts in clinical spiral CT using a deep learning-based projection raw data upsampling method and robustness evaluation 
773 1 8 |g volume:51  |g year:2024  |g number:3  |g pages:1597-1616  |g extent:20  |a Reducing windmill artifacts in clinical spiral CT using a deep learning-based projection raw data upsampling method and robustness evaluation 
856 4 0 |u https://doi.org/10.1002/mp.16938  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.16938  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240311 
993 |a Article 
994 |a 2024 
998 |g 120866544  |a Kachelrieß, Marc  |m 120866544:Kachelrieß, Marc  |d 140000  |e 140000PK120866544  |k 0/140000/  |p 7  |y j 
998 |g 1323076379  |a Magonov, Jan  |m 1323076379:Magonov, Jan  |d 140000  |e 140000PM1323076379  |k 0/140000/  |p 1  |x j 
999 |a KXP-PPN1883061423  |e 4499060923 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"20 S.","noteIll":"Illustrationen"}],"name":{"displayForm":["Jan Magonov, Joscha Maier, Julien Erath, Johan Sunnegårdh, Eric Fournié, Karl Stierstorfer, Marc Kachelrieß"]},"recId":"1883061423","id":{"eki":["1883061423"],"doi":["10.1002/mp.16938"]},"relHost":[{"note":["Gesehen am 01.08.2025"],"titleAlt":[{"title":"Medical physics online"}],"origin":[{"dateIssuedDisp":"1974-","publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY","publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]","dateIssuedKey":"1974"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Medical physics","title_sort":"Medical physics"}],"part":{"text":"51(2024), 3, Seite 1597-1616","pages":"1597-1616","year":"2024","volume":"51","extent":"20","issue":"3"},"language":["eng"],"disp":"Reducing windmill artifacts in clinical spiral CT using a deep learning-based projection raw data upsampling method and robustness evaluationMedical physics","id":{"eki":["265784867"],"issn":["2473-4209","1522-8541"],"zdb":["1466421-5"]},"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1974 -"],"recId":"265784867"}],"person":[{"family":"Magonov","display":"Magonov, Jan","role":"aut","given":"Jan"},{"given":"Joscha","role":"aut","family":"Maier","display":"Maier, Joscha"},{"family":"Erath","display":"Erath, Julien","role":"aut","given":"Julien"},{"display":"Sunnegårdh, Johan","family":"Sunnegårdh","given":"Johan","role":"aut"},{"role":"aut","given":"Eric","family":"Fournié","display":"Fournié, Eric"},{"family":"Stierstorfer","display":"Stierstorfer, Karl","role":"aut","given":"Karl"},{"family":"Kachelrieß","display":"Kachelrieß, Marc","role":"aut","given":"Marc"}],"origin":[{"dateIssuedKey":"2024","edition":"Online version of record before inclusion in an issue","dateIssuedDisp":"16 January 2024"}],"note":["Gesehen am 11.03.2024"],"title":[{"title":"Reducing windmill artifacts in clinical spiral CT using a deep learning-based projection raw data upsampling","subtitle":"method and robustness evaluation","title_sort":"Reducing windmill artifacts in clinical spiral CT using a deep learning-based projection raw data upsampling"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"]} 
SRT |a MAGONOVJANREDUCINGWI1620