Structured population models on Polish spaces: a unified approach including graphs, Riemannian manifolds and measure spaces to describe dynamics of heterogeneous populations

This paper presents a mathematical framework for modeling the dynamics of heterogeneous populations. Models describing local and non-local growth and transport processes appear in a variety of applications, such as crowd dynamics, tissue regeneration, cancer development and coagulation-fragmentation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Düll, Christian (VerfasserIn) , Gwiazda, Piotr (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn) , Skrzeczkowski, Jakub (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 2024
In: Mathematical models and methods in applied sciences (M 3 AS)
Year: 2024, Jahrgang: 34, Heft: 01, Pages: 109-143
ISSN:1793-6314
DOI:10.1142/S0218202524400037
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S0218202524400037
Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/10.1142/S0218202524400037
Volltext
Verfasserangaben:Christian Düll, Piotr Gwiazda, Anna Marciniak-Czochra, Jakub Skrzeczkowski

MARC

LEADER 00000caa a2200000 c 4500
001 188306564X
003 DE-627
005 20240703152106.0
007 cr uuu---uuuuu
008 240311s2024 xx |||||o 00| ||eng c
024 7 |a 10.1142/S0218202524400037  |2 doi 
035 |a (DE-627)188306564X 
035 |a (DE-599)KXP188306564X 
035 |a (OCoLC)1443645204 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Düll, Christian  |d 1994-  |e VerfasserIn  |0 (DE-588)1180545761  |0 (DE-627)1067773789  |0 (DE-576)520273095  |4 aut 
245 1 0 |a Structured population models on Polish spaces  |b a unified approach including graphs, Riemannian manifolds and measure spaces to describe dynamics of heterogeneous populations  |c Christian Düll, Piotr Gwiazda, Anna Marciniak-Czochra, Jakub Skrzeczkowski 
264 1 |c January 2024 
300 |a 35 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 8 November 2023 
500 |a Gesehen am 11.03.2024 
520 |a This paper presents a mathematical framework for modeling the dynamics of heterogeneous populations. Models describing local and non-local growth and transport processes appear in a variety of applications, such as crowd dynamics, tissue regeneration, cancer development and coagulation-fragmentation processes. The diverse applications pose a common challenge to mathematicians due to the multiscale nature of the structures that underlie the system’s self-organization and control. Similar abstract mathematical problems arise when formulating problems in the language of measure evolution on a multi-faceted state space. Motivated by these observations, we propose a general mathematical framework for nonlinear structured population models on abstract metric spaces, which are only assumed to be separable and complete. We exploit the structure of the space of non-negative Radon measures with the dual bounded Lipschitz distance (flat metric), which is a generalization of the Wasserstein distance, capable of addressing non-conservative problems. The formulation of models on general metric spaces allows considering infinite-dimensional state spaces or graphs and coupling discrete and continuous state transitions. This opens up exciting possibilities for modeling single-cell data, crowd dynamics or coagulation-fragmentation processes. 
650 4 |a dual bounded Lipschitz distance 
650 4 |a flat metric 
650 4 |a measure differential equation 
650 4 |a Polish spaces 
650 4 |a Structured population model 
700 1 |a Gwiazda, Piotr  |e VerfasserIn  |4 aut 
700 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
700 1 |a Skrzeczkowski, Jakub  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Mathematical models and methods in applied sciences (M 3 AS)  |d Singapore [u.a.] : World Scientific, 1991  |g 34(2024), 01 vom: Jan., Seite 109-143  |h Online-Ressource  |w (DE-627)335257534  |w (DE-600)2058995-5  |w (DE-576)095092862  |x 1793-6314  |7 nnas  |a Structured population models on Polish spaces a unified approach including graphs, Riemannian manifolds and measure spaces to describe dynamics of heterogeneous populations 
773 1 8 |g volume:34  |g year:2024  |g number:01  |g month:01  |g pages:109-143  |g extent:35  |a Structured population models on Polish spaces a unified approach including graphs, Riemannian manifolds and measure spaces to describe dynamics of heterogeneous populations 
856 4 0 |u https://doi.org/10.1142/S0218202524400037  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.worldscientific.com/doi/10.1142/S0218202524400037  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240311 
993 |a Article 
994 |a 2024 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 110000  |d 110400  |e 110000PM1044379626  |e 110400PM1044379626  |k 0/110000/  |k 1/110000/110400/  |p 3 
998 |g 1180545761  |a Düll, Christian  |m 1180545761:Düll, Christian  |d 110000  |d 110400  |e 110000PD1180545761  |e 110400PD1180545761  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN188306564X  |e 4499111366 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1142/S0218202524400037"],"eki":["188306564X"]},"relHost":[{"id":{"issn":["1793-6314"],"eki":["335257534"],"zdb":["2058995-5"]},"recId":"335257534","pubHistory":["1.1991 -"],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"part":{"extent":"35","volume":"34","year":"2024","text":"34(2024), 01 vom: Jan., Seite 109-143","pages":"109-143","issue":"01"},"origin":[{"dateIssuedKey":"1991","publisher":"World Scientific","dateIssuedDisp":"1991-","publisherPlace":"Singapore [u.a.]"}],"note":["Gesehen am 11.08.2021"],"type":{"media":"Online-Ressource","bibl":"periodical"},"titleAlt":[{"title":"M 3 AS"},{"title":"MAS"}],"title":[{"title_sort":"Mathematical models and methods in applied sciences (M 3 AS)","title":"Mathematical models and methods in applied sciences (M 3 AS)"}],"disp":"Structured population models on Polish spaces a unified approach including graphs, Riemannian manifolds and measure spaces to describe dynamics of heterogeneous populationsMathematical models and methods in applied sciences (M 3 AS)"}],"physDesc":[{"extent":"35 S."}],"name":{"displayForm":["Christian Düll, Piotr Gwiazda, Anna Marciniak-Czochra, Jakub Skrzeczkowski"]},"recId":"188306564X","note":["Veröffentlicht: 8 November 2023","Gesehen am 11.03.2024"],"origin":[{"dateIssuedDisp":"January 2024","dateIssuedKey":"2024"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Structured population models on Polish spaces","title_sort":"Structured population models on Polish spaces","subtitle":"a unified approach including graphs, Riemannian manifolds and measure spaces to describe dynamics of heterogeneous populations"}],"language":["eng"],"person":[{"display":"Düll, Christian","family":"Düll","given":"Christian","role":"aut"},{"given":"Piotr","role":"aut","family":"Gwiazda","display":"Gwiazda, Piotr"},{"role":"aut","given":"Anna","display":"Marciniak-Czochra, Anna","family":"Marciniak-Czochra"},{"role":"aut","given":"Jakub","family":"Skrzeczkowski","display":"Skrzeczkowski, Jakub"}]} 
SRT |a DUELLCHRISSTRUCTURED2024