Structured population models on Polish spaces: a unified approach including graphs, Riemannian manifolds and measure spaces to describe dynamics of heterogeneous populations

This paper presents a mathematical framework for modeling the dynamics of heterogeneous populations. Models describing local and non-local growth and transport processes appear in a variety of applications, such as crowd dynamics, tissue regeneration, cancer development and coagulation-fragmentation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Düll, Christian (VerfasserIn) , Gwiazda, Piotr (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn) , Skrzeczkowski, Jakub (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 2024
In: Mathematical models and methods in applied sciences (M 3 AS)
Year: 2024, Jahrgang: 34, Heft: 01, Pages: 109-143
ISSN:1793-6314
DOI:10.1142/S0218202524400037
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S0218202524400037
Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/10.1142/S0218202524400037
Volltext
Verfasserangaben:Christian Düll, Piotr Gwiazda, Anna Marciniak-Czochra, Jakub Skrzeczkowski
Beschreibung
Zusammenfassung:This paper presents a mathematical framework for modeling the dynamics of heterogeneous populations. Models describing local and non-local growth and transport processes appear in a variety of applications, such as crowd dynamics, tissue regeneration, cancer development and coagulation-fragmentation processes. The diverse applications pose a common challenge to mathematicians due to the multiscale nature of the structures that underlie the system’s self-organization and control. Similar abstract mathematical problems arise when formulating problems in the language of measure evolution on a multi-faceted state space. Motivated by these observations, we propose a general mathematical framework for nonlinear structured population models on abstract metric spaces, which are only assumed to be separable and complete. We exploit the structure of the space of non-negative Radon measures with the dual bounded Lipschitz distance (flat metric), which is a generalization of the Wasserstein distance, capable of addressing non-conservative problems. The formulation of models on general metric spaces allows considering infinite-dimensional state spaces or graphs and coupling discrete and continuous state transitions. This opens up exciting possibilities for modeling single-cell data, crowd dynamics or coagulation-fragmentation processes.
Beschreibung:Veröffentlicht: 8 November 2023
Gesehen am 11.03.2024
Beschreibung:Online Resource
ISSN:1793-6314
DOI:10.1142/S0218202524400037