Classification of types of changes in gully environments using time series forest algorithm [data]

This code implements the TimeSeriesForest algorithm to classify different types of changes in gully environments. i)gully topographical change, ii)no change outside gully, iii) no change inside gully, and iv) non-topographical change. The algorithm is specifically designed for time series classifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vallejo Orti, Miguel (VerfasserIn) , Castillo, Carlos (VerfasserIn) , Zahs, Vivien (VerfasserIn) , Bubenzer, Olaf (VerfasserIn) , Höfle, Bernhard (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2023-07-24
DOI:10.11588/data/NSMM6P
Schlagworte:
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.11588/data/NSMM6P
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/NSMM6P
Volltext
Verfasserangaben:Miguel Vallejo Orti, Carlos Castillo, Vivien Zahs, Olaf Bubenzer, Bernhard Höfle

MARC

LEADER 00000cmi a2200000 c 4500
001 1883467039
003 DE-627
005 20240416113522.0
006 su| d|o |0 |0
007 cr uuu---uuuuu
008 240314c20239999xx |o | eng c
024 7 |a 10.11588/data/NSMM6P  |2 doi 
035 |a (DE-627)1883467039 
035 |a (DE-599)KXP1883467039 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Vallejo Orti, Miguel  |d 1983-  |e VerfasserIn  |0 (DE-588)1192770056  |0 (DE-627)167124317X  |4 aut 
245 1 0 |a Classification of types of changes in gully environments using time series forest algorithm [data]  |c Miguel Vallejo Orti, Carlos Castillo, Vivien Zahs, Olaf Bubenzer, Bernhard Höfle 
264 1 |a Heidelberg  |b Universität  |c 2023-07-24 
300 |a 1 Online-Ressource (8 Files) 
336 |a Text  |b txt  |2 rdacontent 
336 |a Computerdaten  |b cod  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.03.2024 
520 |a This code implements the TimeSeriesForest algorithm to classify different types of changes in gully environments. i)gully topographical change, ii)no change outside gully, iii) no change inside gully, and iv) non-topographical change. The algorithm is specifically designed for time series classification tasks, where the input data represents the characteristics of gullies over time. The code follows a series of steps to prepare the data, train the classifier, calculate performance metrics, and generate predictions. The data preparation phase involves importing training and testing data from CSV files. The training data is then divided into classes based on their labels, and a subset of the top rows is selected for each class to create a balanced training dataset. Time series data and corresponding labels are extracted from the training data, while only the time series data is extracted from the testing data. Next, the code calculates various performance metrics to evaluate the trained classifier. It splits the training data into training and testing sets, initializes the TimeSeriesForest classifier, and trains it using the training set. The accuracy of the classifier is calculated on the testing set, and feature importances are determined. Predictions are generated for both the testing set and new data using the trained classifier. The code then computes a confusion matrix to analyze the classification results, visualizing it using Seaborn and Matplotlib. Performance metrics such as True Accuracy, Kappa, Producer's Accuracy, and User's Accuracy are calculated and printed to assess the classifier's effectiveness in classifying gully changes. Lastly, the code performs ensemble predictions by combining the testing data with the generated predictions. The results, including predictions and associated probabilities, are saved to an output file. Overall, this code provides a practical implementation of the TimeSeriesForest algorithm for classifying types of changes in gully environments, demonstrating its potential for environmental monitoring and management. 
650 4 |a Earth and Environmental Sciences 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
655 7 |a Datenbank  |0 (DE-588)4011119-2  |0 (DE-627)106354256  |0 (DE-576)208891943  |2 gnd-content 
700 1 |a Castillo, Carlos  |e VerfasserIn  |0 (DE-588)1326327445  |0 (DE-627)1885937458  |4 aut 
700 1 |a Zahs, Vivien  |e VerfasserIn  |0 (DE-588)1227935412  |0 (DE-627)1749138905  |4 aut 
700 1 |a Bubenzer, Olaf  |d 1964-  |e VerfasserIn  |0 (DE-588)173301495  |0 (DE-627)698219147  |0 (DE-576)181476576  |4 aut 
700 1 |a Höfle, Bernhard  |e VerfasserIn  |0 (DE-588)1019895403  |0 (DE-627)691049297  |0 (DE-576)358986753  |4 aut 
787 0 8 |i Forschungsdaten zu  |a Vallejo Orti, Miguel, 1983 -   |t Classifying types of gully changes with unoccupied aircraft vehicles 3D multitemporal point clouds for training of satellite data analysis in Northwest Namibia  |d 2024  |w (DE-627)1882047575 
856 4 0 |u https://doi.org/10.11588/data/NSMM6P  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/NSMM6P  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a BO 
992 |a 20240314 
993 |a ResearchData 
994 |a 2023 
998 |g 1019895403  |a Höfle, Bernhard  |m 1019895403:Höfle, Bernhard  |d 120000  |d 120700  |e 120000PH1019895403  |e 120700PH1019895403  |k 0/120000/  |k 1/120000/120700/  |p 5  |y j 
998 |g 173301495  |a Bubenzer, Olaf  |m 173301495:Bubenzer, Olaf  |d 120000  |d 120700  |e 120000PB173301495  |e 120700PB173301495  |k 0/120000/  |k 1/120000/120700/  |p 4 
998 |g 1227935412  |a Zahs, Vivien  |m 1227935412:Zahs, Vivien  |d 120000  |d 120700  |e 120000PZ1227935412  |e 120700PZ1227935412  |k 0/120000/  |k 1/120000/120700/  |p 3 
998 |g 1192770056  |a Vallejo Orti, Miguel  |m 1192770056:Vallejo Orti, Miguel  |d 120000  |e 120000PV1192770056  |k 0/120000/  |p 1  |x j 
999 |a KXP-PPN1883467039  |e 4500332014 
BIB |a Y 
JSO |a {"person":[{"given":"Miguel","role":"aut","display":"Vallejo Orti, Miguel","family":"Vallejo Orti","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Castillo","display":"Castillo, Carlos","role":"aut","given":"Carlos"},{"family":"Zahs","roleDisplay":"VerfasserIn","given":"Vivien","display":"Zahs, Vivien","role":"aut"},{"given":"Olaf","role":"aut","display":"Bubenzer, Olaf","family":"Bubenzer","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Höfle","display":"Höfle, Bernhard","role":"aut","given":"Bernhard"}],"physDesc":[{"extent":"1 Online-Ressource (8 Files)"}],"name":{"displayForm":["Miguel Vallejo Orti, Carlos Castillo, Vivien Zahs, Olaf Bubenzer, Bernhard Höfle"]},"type":{"media":"Online-Ressource","bibl":"dataset"},"origin":[{"publisher":"Universität","dateIssuedKey":"2023","publisherPlace":"Heidelberg","dateIssuedDisp":"2023-07-24"}],"language":["eng"],"recId":"1883467039","id":{"eki":["1883467039"],"doi":["10.11588/data/NSMM6P"]},"title":[{"title":"Classification of types of changes in gully environments using time series forest algorithm [data]","title_sort":"Classification of types of changes in gully environments using time series forest algorithm [data]"}],"note":["Gesehen am 14.03.2024"]} 
SRT |a VALLEJOORTCLASSIFICA2023