Transfer learning for medical image classification: a literature review

Transfer learning (TL) with convolutional neural networks aims to improve performances on a new task by leveraging the knowledge of similar tasks learned in advance. It has made a major contribution to medical image analysis as it overcomes the data scarcity problem as well as it saves time and hard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kim, Hee Eun (VerfasserIn) , Cosa‐Linan, Alejandro (VerfasserIn) , Santhanam, Nandhini (VerfasserIn) , Jannesari, Mahboubeh (VerfasserIn) , Maros, Máté E. (VerfasserIn) , Ganslandt, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 April 2022
In: BMC medical imaging
Year: 2022, Jahrgang: 22, Pages: 1-13
ISSN:1471-2342
DOI:10.1186/s12880-022-00793-7
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s12880-022-00793-7
Verlag, kostenfrei, Volltext: http://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00793-7
Volltext
Verfasserangaben:Hee E. Kim, Alejandro Cosa-Linan, Nandhini Santhanam, Mahboubeh Jannesari, Mate E. Maros and Thomas Ganslandt

MARC

LEADER 00000caa a2200000 c 4500
001 1883724406
003 DE-627
005 20240703154419.0
007 cr uuu---uuuuu
008 240318s2022 xx |||||o 00| ||eng c
024 7 |a 10.1186/s12880-022-00793-7  |2 doi 
035 |a (DE-627)1883724406 
035 |a (DE-599)KXP1883724406 
035 |a (OCoLC)1443645808 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kim, Hee Eun  |d 1986-  |e VerfasserIn  |0 (DE-588)1296369323  |0 (DE-627)1852791470  |4 aut 
245 1 0 |a Transfer learning for medical image classification  |b a literature review  |c Hee E. Kim, Alejandro Cosa-Linan, Nandhini Santhanam, Mahboubeh Jannesari, Mate E. Maros and Thomas Ganslandt 
264 1 |c 13 April 2022 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 18.03.2024 
520 |a Transfer learning (TL) with convolutional neural networks aims to improve performances on a new task by leveraging the knowledge of similar tasks learned in advance. It has made a major contribution to medical image analysis as it overcomes the data scarcity problem as well as it saves time and hardware resources. However, transfer learning has been arbitrarily configured in the majority of studies. This review paper attempts to provide guidance for selecting a model and TL approaches for the medical image classification task. 425 peer-reviewed articles were retrieved from two databases, PubMed and Web of Science, published in English, up until December 31, 2020. Articles were assessed by two independent reviewers, with the aid of a third reviewer in the case of discrepancies. We followed the PRISMA guidelines for the paper selection and 121 studies were regarded as eligible for the scope of this review. We investigated articles focused on selecting backbone models and TL approaches including feature extractor, feature extractor hybrid, fine-tuning and fine-tuning from scratch. The majority of studies (n = 57) empirically evaluated multiple models followed by deep models (n = 33) and shallow (n = 24) models. Inception, one of the deep models, was the most employed in literature (n = 26). With respect to the TL, the majority of studies (n = 46) empirically benchmarked multiple approaches to identify the optimal configuration. The rest of the studies applied only a single approach for which feature extractor (n = 38) and fine-tuning from scratch (n = 27) were the two most favored approaches. Only a few studies applied feature extractor hybrid (n = 7) and fine-tuning (n = 3) with pretrained models. The investigated studies demonstrated the efficacy of transfer learning despite the data scarcity. We encourage data scientists and practitioners to use deep models (e.g. ResNet or Inception) as feature extractors, which can save computational costs and time without degrading the predictive power. 
700 1 |a Cosa‐Linan, Alejandro  |e VerfasserIn  |0 (DE-588)1156045770  |0 (DE-627)1018603700  |0 (DE-576)502002751  |4 aut 
700 1 |a Santhanam, Nandhini  |d 1993-  |e VerfasserIn  |0 (DE-588)1237274672  |0 (DE-627)1763709396  |4 aut 
700 1 |a Jannesari, Mahboubeh  |d 1985-  |e VerfasserIn  |0 (DE-588)1323768998  |0 (DE-627)1883724929  |4 aut 
700 1 |a Maros, Máté E.  |d 1986-  |e VerfasserIn  |0 (DE-588)1144379407  |0 (DE-627)1004715153  |0 (DE-576)495364827  |4 aut 
700 1 |a Ganslandt, Thomas  |d 1969-  |e VerfasserIn  |0 (DE-588)124367720  |0 (DE-627)08581623X  |0 (DE-576)294139915  |4 aut 
773 0 8 |i Enthalten in  |t BMC medical imaging  |d London : BioMed Central, 2001  |g 22(2022), Artikel-ID 69, Seite 1-13  |h Online-Ressource  |w (DE-627)33679911X  |w (DE-600)2061975-3  |w (DE-576)107015137  |x 1471-2342  |7 nnas  |a Transfer learning for medical image classification a literature review 
773 1 8 |g volume:22  |g year:2022  |g elocationid:69  |g pages:1-13  |g extent:13  |a Transfer learning for medical image classification a literature review 
856 4 0 |u https://doi.org/10.1186/s12880-022-00793-7  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00793-7  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240318 
993 |a Article 
994 |a 2022 
998 |g 124367720  |a Ganslandt, Thomas  |m 124367720:Ganslandt, Thomas  |d 60000  |e 60000PG124367720  |k 0/60000/  |p 6  |y j 
998 |g 1144379407  |a Maros, Máté E.  |m 1144379407:Maros, Máté E.  |d 60000  |d 63000  |e 60000PM1144379407  |e 63000PM1144379407  |k 0/60000/  |k 1/60000/63000/  |p 5 
998 |g 1323768998  |a Jannesari, Mahboubeh  |m 1323768998:Jannesari, Mahboubeh  |d 60000  |d 65300  |e 60000PJ1323768998  |e 65300PJ1323768998  |k 0/60000/  |k 1/60000/65300/  |p 4 
998 |g 1237274672  |a Santhanam, Nandhini  |m 1237274672:Santhanam, Nandhini  |d 60000  |d 65300  |e 60000PS1237274672  |e 65300PS1237274672  |k 0/60000/  |k 1/60000/65300/  |p 3 
998 |g 1156045770  |a Cosa‐Linan, Alejandro  |m 1156045770:Cosa‐Linan, Alejandro  |p 2 
998 |g 1296369323  |a Kim, Hee Eun  |m 1296369323:Kim, Hee Eun  |d 60000  |d 65300  |e 60000PK1296369323  |e 65300PK1296369323  |k 0/60000/  |k 1/60000/65300/  |p 1  |x j 
999 |a KXP-PPN1883724406  |e 4501481846 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1883724406","name":{"displayForm":["Hee E. Kim, Alejandro Cosa-Linan, Nandhini Santhanam, Mahboubeh Jannesari, Mate E. Maros and Thomas Ganslandt"]},"origin":[{"dateIssuedDisp":"13 April 2022","dateIssuedKey":"2022"}],"id":{"eki":["1883724406"],"doi":["10.1186/s12880-022-00793-7"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"physDesc":[{"extent":"13 S."}],"title":[{"title":"Transfer learning for medical image classification","subtitle":"a literature review","title_sort":"Transfer learning for medical image classification"}],"person":[{"display":"Kim, Hee Eun","given":"Hee Eun","role":"aut","family":"Kim"},{"display":"Cosa‐Linan, Alejandro","given":"Alejandro","role":"aut","family":"Cosa‐Linan"},{"display":"Santhanam, Nandhini","role":"aut","given":"Nandhini","family":"Santhanam"},{"display":"Jannesari, Mahboubeh","family":"Jannesari","given":"Mahboubeh","role":"aut"},{"display":"Maros, Máté E.","family":"Maros","given":"Máté E.","role":"aut"},{"display":"Ganslandt, Thomas","family":"Ganslandt","given":"Thomas","role":"aut"}],"relHost":[{"title":[{"title":"BMC medical imaging","title_sort":"BMC medical imaging"}],"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.2001 -"],"language":["eng"],"note":["Gesehen am 01.02.16"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"year":"2022","pages":"1-13","volume":"22","extent":"13","text":"22(2022), Artikel-ID 69, Seite 1-13"},"origin":[{"publisherPlace":"London","dateIssuedDisp":"2001-","dateIssuedKey":"2001","publisher":"BioMed Central"}],"id":{"issn":["1471-2342"],"zdb":["2061975-3"],"eki":["33679911X"]},"disp":"Transfer learning for medical image classification a literature reviewBMC medical imaging","recId":"33679911X"}],"note":["Gesehen am 18.03.2024"]} 
SRT |a KIMHEEEUNCTRANSFERLE1320