Artificial intelligence in surgical training for kidney cancer: a systematic review of the literature
The prevalence of renal cell carcinoma (RCC) is increasing due to advanced imaging techniques. Surgical resection is the standard treatment, involving complex radical and partial nephrectomy procedures that demand extensive training and planning. Furthermore, artificial intelligence (AI) can potenti...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
27 September 2023
|
| In: |
Diagnostics
Year: 2023, Volume: 13, Issue: 19, Pages: 1-17 |
| ISSN: | 2075-4418 |
| DOI: | 10.3390/diagnostics13193070 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.3390/diagnostics13193070 Verlag, kostenfrei, Volltext: https://www.mdpi.com/2075-4418/13/19/3070 |
| Author Notes: | Natali Rodriguez Peñaranda, Ahmed Eissa, Stefania Ferretti, Giampaolo Bianchi, Stefano Di Bari, Rui Farinha, Pietro Piazza, Enrico Checcucci, Inés Rivero Belenchón, Alessandro Veccia, Juan Gomez Rivas, Mark Taratkin, Karl-Friedrich Kowalewski, Severin Rodler, Pieter De Backer, Giovanni Enrico Cacciamani, Ruben De Groote, Anthony G. Gallagher, Alexandre Mottrie, Salvatore Micali, Stefano Puliatti on behalf of the YAU Uro-Technology Working Group |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1883813174 | ||
| 003 | DE-627 | ||
| 005 | 20240703155028.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240319s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3390/diagnostics13193070 |2 doi | |
| 035 | |a (DE-627)1883813174 | ||
| 035 | |a (DE-599)KXP1883813174 | ||
| 035 | |a (OCoLC)1443645684 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Rodriguez Peñaranda, Natali |e VerfasserIn |0 (DE-588)1323926917 |0 (DE-627)1883813786 |4 aut | |
| 245 | 1 | 0 | |a Artificial intelligence in surgical training for kidney cancer |b a systematic review of the literature |c Natali Rodriguez Peñaranda, Ahmed Eissa, Stefania Ferretti, Giampaolo Bianchi, Stefano Di Bari, Rui Farinha, Pietro Piazza, Enrico Checcucci, Inés Rivero Belenchón, Alessandro Veccia, Juan Gomez Rivas, Mark Taratkin, Karl-Friedrich Kowalewski, Severin Rodler, Pieter De Backer, Giovanni Enrico Cacciamani, Ruben De Groote, Anthony G. Gallagher, Alexandre Mottrie, Salvatore Micali, Stefano Puliatti on behalf of the YAU Uro-Technology Working Group |
| 264 | 1 | |c 27 September 2023 | |
| 300 | |a 17 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 19.03.2024 | ||
| 520 | |a The prevalence of renal cell carcinoma (RCC) is increasing due to advanced imaging techniques. Surgical resection is the standard treatment, involving complex radical and partial nephrectomy procedures that demand extensive training and planning. Furthermore, artificial intelligence (AI) can potentially aid the training process in the field of kidney cancer. This review explores how artificial intelligence (AI) can create a framework for kidney cancer surgery to address training difficulties. Following PRISMA 2020 criteria, an exhaustive search of PubMed and SCOPUS databases was conducted without any filters or restrictions. Inclusion criteria encompassed original English articles focusing on AI’s role in kidney cancer surgical training. On the other hand, all non-original articles and articles published in any language other than English were excluded. Two independent reviewers assessed the articles, with a third party settling any disagreement. Study specifics, AI tools, methodologies, endpoints, and outcomes were extracted by the same authors. The Oxford Center for Evidence-Based Medicine’s evidence levels were employed to assess the studies. Out of 468 identified records, 14 eligible studies were selected. Potential AI applications in kidney cancer surgical training include analyzing surgical workflow, annotating instruments, identifying tissues, and 3D reconstruction. AI is capable of appraising surgical skills, including the identification of procedural steps and instrument tracking. While AI and augmented reality (AR) enhance training, challenges persist in real-time tracking and registration. The utilization of AI-driven 3D reconstruction proves beneficial for intraoperative guidance and preoperative preparation. Artificial intelligence (AI) shows potential for advancing surgical training by providing unbiased evaluations, personalized feedback, and enhanced learning processes. Yet challenges such as consistent metric measurement, ethical concerns, and data privacy must be addressed. The integration of AI into kidney cancer surgical training offers solutions to training difficulties and a boost to surgical education. However, to fully harness its potential, additional studies are imperative. | ||
| 650 | 4 | |a annotation | |
| 650 | 4 | |a artificial intelligence | |
| 650 | 4 | |a artificial neural network | |
| 650 | 4 | |a augmented reality | |
| 650 | 4 | |a computer vision | |
| 650 | 4 | |a deep learning | |
| 650 | 4 | |a kidney cancer | |
| 650 | 4 | |a partial nephrectomy | |
| 650 | 4 | |a radical nephrectomy | |
| 650 | 4 | |a RAPN | |
| 650 | 4 | |a renal cancer | |
| 650 | 4 | |a simulation | |
| 650 | 4 | |a training | |
| 700 | 1 | |a Eissa, Ahmed |e VerfasserIn |4 aut | |
| 700 | 1 | |a Ferretti, Stefania |e VerfasserIn |4 aut | |
| 700 | 1 | |a Bianchi, Giampaolo |e VerfasserIn |4 aut | |
| 700 | 1 | |a Di Bari, Stefano |e VerfasserIn |4 aut | |
| 700 | 1 | |a Farinha, Rui |e VerfasserIn |4 aut | |
| 700 | 1 | |a Piazza, Pietro |e VerfasserIn |4 aut | |
| 700 | 1 | |a Checcucci, Enrico |e VerfasserIn |4 aut | |
| 700 | 1 | |a Belenchón, Inés Rivero |e VerfasserIn |4 aut | |
| 700 | 1 | |a Veccia, Alessandro |e VerfasserIn |4 aut | |
| 700 | 1 | |a Gomez Rivas, Juan |e VerfasserIn |4 aut | |
| 700 | 1 | |a Taratkin, Mark |e VerfasserIn |4 aut | |
| 700 | 1 | |a Kowalewski, Karl-Friedrich |d 1989- |e VerfasserIn |0 (DE-588)1100724192 |0 (DE-627)859518825 |0 (DE-576)469770740 |4 aut | |
| 700 | 1 | |a Rodler, Severin |e VerfasserIn |4 aut | |
| 700 | 1 | |a De Backer, Pieter |e VerfasserIn |4 aut | |
| 700 | 1 | |a Cacciamani, Giovanni Enrico |e VerfasserIn |4 aut | |
| 700 | 1 | |a De Groote, Ruben |e VerfasserIn |4 aut | |
| 700 | 1 | |a Gallagher, Anthony G. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Mottrie, Alexandre |e VerfasserIn |4 aut | |
| 700 | 1 | |a Micali, Salvatore |e VerfasserIn |4 aut | |
| 700 | 1 | |a Puliatti, Stefano |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Diagnostics |d Basel : MDPI, 2011 |g 13(2023), 19, Artikel-ID 3070, Seite 1-17 |h Online-Ressource |w (DE-627)718627814 |w (DE-600)2662336-5 |w (DE-576)365413917 |x 2075-4418 |7 nnas |a Artificial intelligence in surgical training for kidney cancer a systematic review of the literature |
| 773 | 1 | 8 | |g volume:13 |g year:2023 |g number:19 |g elocationid:3070 |g pages:1-17 |g extent:17 |a Artificial intelligence in surgical training for kidney cancer a systematic review of the literature |
| 856 | 4 | 0 | |u https://doi.org/10.3390/diagnostics13193070 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://www.mdpi.com/2075-4418/13/19/3070 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240319 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1100724192 |a Kowalewski, Karl-Friedrich |m 1100724192:Kowalewski, Karl-Friedrich |d 60000 |d 63100 |e 60000PK1100724192 |e 63100PK1100724192 |k 0/60000/ |k 1/60000/63100/ |p 13 | ||
| 999 | |a KXP-PPN1883813174 |e 450175611X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Natali Rodriguez Peñaranda, Ahmed Eissa, Stefania Ferretti, Giampaolo Bianchi, Stefano Di Bari, Rui Farinha, Pietro Piazza, Enrico Checcucci, Inés Rivero Belenchón, Alessandro Veccia, Juan Gomez Rivas, Mark Taratkin, Karl-Friedrich Kowalewski, Severin Rodler, Pieter De Backer, Giovanni Enrico Cacciamani, Ruben De Groote, Anthony G. Gallagher, Alexandre Mottrie, Salvatore Micali, Stefano Puliatti on behalf of the YAU Uro-Technology Working Group"]},"id":{"eki":["1883813174"],"doi":["10.3390/diagnostics13193070"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"27 September 2023"}],"relHost":[{"origin":[{"publisherPlace":"Basel","publisher":"MDPI","dateIssuedKey":"2011","dateIssuedDisp":"2011-"}],"id":{"zdb":["2662336-5"],"eki":["718627814"],"issn":["2075-4418"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Diagnostics","title":"Diagnostics","subtitle":"open access journal"}],"pubHistory":["1.2011 -"],"part":{"volume":"13","text":"13(2023), 19, Artikel-ID 3070, Seite 1-17","extent":"17","year":"2023","issue":"19","pages":"1-17"},"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 28.05.2020"],"disp":"Artificial intelligence in surgical training for kidney cancer a systematic review of the literatureDiagnostics","language":["eng"],"recId":"718627814"}],"physDesc":[{"extent":"17 S."}],"person":[{"display":"Rodriguez Peñaranda, Natali","roleDisplay":"VerfasserIn","role":"aut","family":"Rodriguez Peñaranda","given":"Natali"},{"family":"Eissa","given":"Ahmed","display":"Eissa, Ahmed","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Ferretti","given":"Stefania","roleDisplay":"VerfasserIn","display":"Ferretti, Stefania","role":"aut"},{"family":"Bianchi","given":"Giampaolo","display":"Bianchi, Giampaolo","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Stefano","family":"Di Bari","role":"aut","display":"Di Bari, Stefano","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Farinha, Rui","roleDisplay":"VerfasserIn","given":"Rui","family":"Farinha"},{"family":"Piazza","given":"Pietro","roleDisplay":"VerfasserIn","display":"Piazza, Pietro","role":"aut"},{"given":"Enrico","family":"Checcucci","role":"aut","display":"Checcucci, Enrico","roleDisplay":"VerfasserIn"},{"given":"Inés Rivero","family":"Belenchón","role":"aut","roleDisplay":"VerfasserIn","display":"Belenchón, Inés Rivero"},{"roleDisplay":"VerfasserIn","display":"Veccia, Alessandro","role":"aut","family":"Veccia","given":"Alessandro"},{"role":"aut","display":"Gomez Rivas, Juan","roleDisplay":"VerfasserIn","given":"Juan","family":"Gomez Rivas"},{"given":"Mark","family":"Taratkin","role":"aut","display":"Taratkin, Mark","roleDisplay":"VerfasserIn"},{"family":"Kowalewski","given":"Karl-Friedrich","display":"Kowalewski, Karl-Friedrich","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Rodler, Severin","roleDisplay":"VerfasserIn","given":"Severin","family":"Rodler"},{"role":"aut","display":"De Backer, Pieter","roleDisplay":"VerfasserIn","given":"Pieter","family":"De Backer"},{"roleDisplay":"VerfasserIn","display":"Cacciamani, Giovanni Enrico","role":"aut","family":"Cacciamani","given":"Giovanni Enrico"},{"family":"De Groote","given":"Ruben","roleDisplay":"VerfasserIn","display":"De Groote, Ruben","role":"aut"},{"display":"Gallagher, Anthony G.","roleDisplay":"VerfasserIn","role":"aut","family":"Gallagher","given":"Anthony G."},{"given":"Alexandre","family":"Mottrie","role":"aut","display":"Mottrie, Alexandre","roleDisplay":"VerfasserIn"},{"given":"Salvatore","family":"Micali","role":"aut","roleDisplay":"VerfasserIn","display":"Micali, Salvatore"},{"display":"Puliatti, Stefano","roleDisplay":"VerfasserIn","role":"aut","family":"Puliatti","given":"Stefano"}],"title":[{"subtitle":"a systematic review of the literature","title":"Artificial intelligence in surgical training for kidney cancer","title_sort":"Artificial intelligence in surgical training for kidney cancer"}],"recId":"1883813174","language":["eng"],"note":["Gesehen am 19.03.2024"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} | ||
| SRT | |a RODRIGUEZPARTIFICIAL2720 | ||