Comparison of prostate MRI lesion segmentation agreement between multiple radiologists and a fully automatic deep learning system

<p> <b>Purpose</b> A recently developed deep learning model (U-Net) approximated the clinical performance of radiologists in the prediction of clinically significant prostate cancer (sPC) from prostate MRI. Here, we compare the agreement between lesion segmentations by U-Net with m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schelb, Patrick (VerfasserIn) , Tavakoli, Andrej (VerfasserIn) , Tubtawee, Teeravut (VerfasserIn) , Hielscher, Thomas (VerfasserIn) , Radtke, Jan Philipp (VerfasserIn) , Görtz, Magdalena (VerfasserIn) , Schütz, Viktoria (VerfasserIn) , Kuder, Tristan Anselm (VerfasserIn) , Schimmöller, Lars (VerfasserIn) , Stenzinger, Albrecht (VerfasserIn) , Hohenfellner, Markus (VerfasserIn) , Schlemmer, Heinz-Peter (VerfasserIn) , Bonekamp, David (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: RöFo
Year: 2021, Jahrgang: 193, Heft: 5, Pages: 559-573
ISSN:1438-9010
DOI:10.1055/a-1290-8070
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1055/a-1290-8070
Verlag, lizenzpflichtig, Volltext: http://www.thieme-connect.de/DOI/DOI?10.1055/a-1290-8070
Volltext
Verfasserangaben:Patrick Schelb, Anoshirwan Andrej Tavakoli, Teeravut Tubtawee, Thomas Hielscher, Jan-Philipp Radtke, Magdalena Görtz, Viktoria Schütz, Tristan Anselm Kuder, Lars Schimmöller, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer, David Bonekamp

MARC

LEADER 00000caa a2200000 c 4500
001 188407846X
003 DE-627
005 20250116011651.0
007 cr uuu---uuuuu
008 240322s2021 xx |||||o 00| ||eng c
024 7 |a 10.1055/a-1290-8070  |2 doi 
035 |a (DE-627)188407846X 
035 |a (DE-599)KXP188407846X 
035 |a (OCoLC)1443657786 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Schelb, Patrick  |d 1994-  |e VerfasserIn  |0 (DE-588)1197061495  |0 (DE-627)1678864773  |4 aut 
245 1 0 |a Comparison of prostate MRI lesion segmentation agreement between multiple radiologists and a fully automatic deep learning system  |c Patrick Schelb, Anoshirwan Andrej Tavakoli, Teeravut Tubtawee, Thomas Hielscher, Jan-Philipp Radtke, Magdalena Görtz, Viktoria Schütz, Tristan Anselm Kuder, Lars Schimmöller, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer, David Bonekamp 
246 1 |i Abweichender Titel  |a Zusammenfassung auf Deutsch und Englisch 
264 1 |c 2021 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 19.11.2020 
500 |a Gesehen am 22.03.2024 
520 |a <p> <b>Purpose</b> A recently developed deep learning model (U-Net) approximated the clinical performance of radiologists in the prediction of clinically significant prostate cancer (sPC) from prostate MRI. Here, we compare the agreement between lesion segmentations by U-Net with manual lesion segmentations performed by different radiologists.</p> <p> <b>Materials and Methods</b> 165 patients with suspicion for sPC underwent targeted and systematic fusion biopsy following 3 Tesla multiparametric MRI (mpMRI). Five sets of segmentations were generated retrospectively: segmentations of clinical lesions, independent segmentations by three radiologists, and fully automated bi-parametric U-Net segmentations. Per-lesion agreement was calculated for each rater by averaging Dice coefficients with all overlapping lesions from other raters. Agreement was compared using descriptive statistics and linear mixed models.</p> <p> <b>Results</b> The mean Dice coefficient for manual segmentations showed only moderate agreement at 0.48-0.52, reflecting the difficult visual task of determining the outline of otherwise jointly detected lesions. U-net segmentations were significantly smaller than manual segmentations (p < 0.0001) and exhibited a lower mean Dice coefficient of 0.22, which was significantly lower compared to manual segmentations (all p < 0.0001). These differences remained after correction for lesion size and were unaffected between sPC and non-sPC lesions and between peripheral and transition zone lesions.</p> <p> <b>Conclusion</b> Knowledge of the order of agreement of manual segmentations of different radiologists is important to set the expectation value for artificial intelligence (AI) systems in the task of prostate MRI lesion segmentation. Perfect agreement (Dice coefficient of one) should not be expected for AI. Lower Dice coefficients of U-Net compared to manual segmentations are only partially explained by smaller segmentation sizes and may result from a focus on the lesion core and a small relative lesion center shift. Although it is primarily important that AI detects sPC correctly, the Dice coefficient for overlapping lesions from multiple raters can be used as a secondary measure for segmentation quality in future studies.</p> <p> <b>Key Points:</b> </p> <p> <b>Citation Format</b> </p> 
546 |a Zusammenfassung unter dem Titel: Vergleich der Kongruenz von Prostata-MRT-Läsionssegmentationen durch mehrere Radiologen und ein vollautomatisches Deep-Learning-System 
700 1 |a Tavakoli, Andrej  |d 1987-  |e VerfasserIn  |0 (DE-588)118568624X  |0 (DE-627)1665044403  |4 aut 
700 1 |a Tubtawee, Teeravut  |e VerfasserIn  |4 aut 
700 1 |a Hielscher, Thomas  |e VerfasserIn  |0 (DE-588)1159594791  |0 (DE-627)1022977768  |0 (DE-576)50506068X  |4 aut 
700 1 |a Radtke, Jan Philipp  |d 1985-  |e VerfasserIn  |0 (DE-588)1020328290  |0 (DE-627)688118089  |0 (DE-576)360178170  |4 aut 
700 1 |a Görtz, Magdalena  |d 1992-  |e VerfasserIn  |0 (DE-588)1166813657  |0 (DE-627)1030681392  |0 (DE-576)510916600  |4 aut 
700 1 |a Schütz, Viktoria  |e VerfasserIn  |0 (DE-588)1183860021  |0 (DE-627)1663385335  |4 aut 
700 1 |a Kuder, Tristan Anselm  |e VerfasserIn  |0 (DE-588)14203911X  |0 (DE-627)704126338  |0 (DE-576)326749675  |4 aut 
700 1 |8 1\p  |a Schimmöller, Lars  |d 1979-  |e VerfasserIn  |0 (DE-588)102371812X  |0 (DE-627)718431065  |0 (DE-576)367313197  |4 aut 
700 1 |a Stenzinger, Albrecht  |e VerfasserIn  |0 (DE-588)139606106  |0 (DE-627)703395238  |0 (DE-576)312432755  |4 aut 
700 1 |a Hohenfellner, Markus  |d 1958-  |e VerfasserIn  |0 (DE-588)133862518  |0 (DE-627)557857988  |0 (DE-576)300155263  |4 aut 
700 1 |a Schlemmer, Heinz-Peter  |d 1961-  |e VerfasserIn  |0 (DE-588)1025559967  |0 (DE-627)722927142  |0 (DE-576)17334805X  |4 aut 
700 1 |a Bonekamp, David  |d 1977-  |e VerfasserIn  |0 (DE-588)128868104  |0 (DE-627)383668581  |0 (DE-576)297371797  |4 aut 
773 0 8 |i Enthalten in  |t RöFo  |d Stuttgart [u.a.] : Thieme, 1975  |g 193(2021), 5, Seite 559-573  |h Online-Ressource  |w (DE-627)324825021  |w (DE-600)2031079-1  |w (DE-576)107736748  |x 1438-9010  |7 nnas  |a Comparison of prostate MRI lesion segmentation agreement between multiple radiologists and a fully automatic deep learning system 
773 1 8 |g volume:193  |g year:2021  |g number:5  |g pages:559-573  |g extent:15  |a Comparison of prostate MRI lesion segmentation agreement between multiple radiologists and a fully automatic deep learning system 
856 4 0 |u https://doi.org/10.1055/a-1290-8070  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://www.thieme-connect.de/DOI/DOI?10.1055/a-1290-8070  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20240322 
993 |a Article 
994 |a 2021 
998 |g 128868104  |a Bonekamp, David  |m 128868104:Bonekamp, David  |d 50000  |e 50000PB128868104  |k 0/50000/  |p 13  |y j 
998 |g 1025559967  |a Schlemmer, Heinz-Peter  |m 1025559967:Schlemmer, Heinz-Peter  |d 50000  |e 50000PS1025559967  |k 0/50000/  |p 12 
998 |g 133862518  |a Hohenfellner, Markus  |m 133862518:Hohenfellner, Markus  |d 910000  |d 910200  |e 910000PH133862518  |e 910200PH133862518  |k 0/910000/  |k 1/910000/910200/  |p 11 
998 |g 139606106  |a Stenzinger, Albrecht  |m 139606106:Stenzinger, Albrecht  |d 910000  |d 912000  |e 910000PS139606106  |e 912000PS139606106  |k 0/910000/  |k 1/910000/912000/  |p 10 
998 |g 14203911X  |a Kuder, Tristan Anselm  |m 14203911X:Kuder, Tristan Anselm  |d 130000  |e 130000PK14203911X  |k 0/130000/  |p 8 
998 |g 1183860021  |a Schütz, Viktoria  |m 1183860021:Schütz, Viktoria  |d 910000  |d 910200  |e 910000PS1183860021  |e 910200PS1183860021  |k 0/910000/  |k 1/910000/910200/  |p 7 
998 |g 1166813657  |a Görtz, Magdalena  |m 1166813657:Görtz, Magdalena  |d 910000  |d 910200  |e 910000PG1166813657  |e 910200PG1166813657  |k 0/910000/  |k 1/910000/910200/  |p 6 
998 |g 1020328290  |a Radtke, Jan Philipp  |m 1020328290:Radtke, Jan Philipp  |d 50000  |e 50000PR1020328290  |k 0/50000/  |p 5 
998 |g 1159594791  |a Hielscher, Thomas  |m 1159594791:Hielscher, Thomas  |d 140000  |e 140000PH1159594791  |k 0/140000/  |p 4 
998 |g 118568624X  |a Tavakoli, Andrej  |m 118568624X:Tavakoli, Andrej  |d 50000  |e 50000PT118568624X  |k 0/50000/  |p 2 
998 |g 1197061495  |a Schelb, Patrick  |m 1197061495:Schelb, Patrick  |d 50000  |e 50000PS1197061495  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN188407846X  |e 4502994553 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"title":[{"title_sort":"Comparison of prostate MRI lesion segmentation agreement between multiple radiologists and a fully automatic deep learning system","title":"Comparison of prostate MRI lesion segmentation agreement between multiple radiologists and a fully automatic deep learning system"}],"titleAlt":[{"title":"Zusammenfassung auf Deutsch und Englisch"}],"person":[{"role":"aut","given":"Patrick","display":"Schelb, Patrick","family":"Schelb"},{"role":"aut","family":"Tavakoli","given":"Andrej","display":"Tavakoli, Andrej"},{"given":"Teeravut","display":"Tubtawee, Teeravut","family":"Tubtawee","role":"aut"},{"family":"Hielscher","display":"Hielscher, Thomas","given":"Thomas","role":"aut"},{"role":"aut","family":"Radtke","given":"Jan Philipp","display":"Radtke, Jan Philipp"},{"display":"Görtz, Magdalena","given":"Magdalena","family":"Görtz","role":"aut"},{"role":"aut","display":"Schütz, Viktoria","given":"Viktoria","family":"Schütz"},{"family":"Kuder","display":"Kuder, Tristan Anselm","given":"Tristan Anselm","role":"aut"},{"display":"Schimmöller, Lars","given":"Lars","family":"Schimmöller","role":"aut"},{"role":"aut","family":"Stenzinger","display":"Stenzinger, Albrecht","given":"Albrecht"},{"role":"aut","family":"Hohenfellner","given":"Markus","display":"Hohenfellner, Markus"},{"display":"Schlemmer, Heinz-Peter","given":"Heinz-Peter","family":"Schlemmer","role":"aut"},{"display":"Bonekamp, David","given":"David","family":"Bonekamp","role":"aut"}],"recId":"188407846X","name":{"displayForm":["Patrick Schelb, Anoshirwan Andrej Tavakoli, Teeravut Tubtawee, Thomas Hielscher, Jan-Philipp Radtke, Magdalena Görtz, Viktoria Schütz, Tristan Anselm Kuder, Lars Schimmöller, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer, David Bonekamp"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"relHost":[{"titleAlt":[{"title":"RöFo vereinigt mit Aktuelle Radiologie"},{"title":"Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin"},{"title":"Fortschritte auf dem Gebiete der Röntgenstrahlen und der neuen bildgebenden Verfahren"}],"language":["ger"],"recId":"324825021","disp":"Comparison of prostate MRI lesion segmentation agreement between multiple radiologists and a fully automatic deep learning systemRöFo","pubHistory":["122.1975 -"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"RöFo","title_sort":"RöFo","subtitle":"Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren"}],"origin":[{"publisherPlace":"Stuttgart [u.a.]","dateIssuedKey":"1975","dateIssuedDisp":"1975-","publisher":"Thieme"}],"note":["Gesehen am 20.03.2023"],"id":{"eki":["324825021"],"doi":["10.1055/s-00000066"],"issn":["1438-9010"],"zdb":["2031079-1"]},"part":{"extent":"15","issue":"5","year":"2021","pages":"559-573","text":"193(2021), 5, Seite 559-573","volume":"193"},"physDesc":[{"extent":"Online-Ressource"}]}],"note":["Online veröffentlicht: 19.11.2020","Gesehen am 22.03.2024"],"physDesc":[{"extent":"15 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["188407846X"],"doi":["10.1055/a-1290-8070"]}} 
SRT |a SCHELBPATRCOMPARISON2021