Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer: a systematic review

Prostate cancer detection with magnetic resonance imaging is based on a standardized MRI-protocol according to the PI-RADS guidelines including morphologic imaging, diffusion weighted imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced perfusion is often omitted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Michaely, Henrik J. M. (VerfasserIn) , Aringhieri, Giacomo (VerfasserIn) , Cioni, Dania (VerfasserIn) , Neri, Emanuele (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 March 2022
In: Diagnostics
Year: 2022, Jahrgang: 12, Heft: 4, Pages: 1-22
ISSN:2075-4418
DOI:10.3390/diagnostics12040799
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/diagnostics12040799
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2075-4418/12/4/799
Volltext
Verfasserangaben:Henrik J. Michaely, Giacomo Aringhieri, Dania Cioni and Emanuele Neri

MARC

LEADER 00000caa a2200000 c 4500
001 1884194354
003 DE-627
005 20240703160244.0
007 cr uuu---uuuuu
008 240325s2022 xx |||||o 00| ||eng c
024 7 |a 10.3390/diagnostics12040799  |2 doi 
035 |a (DE-627)1884194354 
035 |a (DE-599)KXP1884194354 
035 |a (OCoLC)1443657450 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Michaely, Henrik J. M.  |d 1976-  |e VerfasserIn  |0 (DE-588)128817283  |0 (DE-627)381568407  |0 (DE-576)297347624  |4 aut 
245 1 0 |a Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer  |b a systematic review  |c Henrik J. Michaely, Giacomo Aringhieri, Dania Cioni and Emanuele Neri 
264 1 |c 24 March 2022 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.03.2024 
520 |a Prostate cancer detection with magnetic resonance imaging is based on a standardized MRI-protocol according to the PI-RADS guidelines including morphologic imaging, diffusion weighted imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced perfusion is often omitted resulting in a biparametric prostate MRI protocol. The intention of this review is to analyze the current value of biparametric prostate MRI in combination with methods of machine-learning and deep learning in the detection, grading, and characterization of prostate cancer; if available a direct comparison with human radiologist performance was performed. PubMed was systematically queried and 29 appropriate studies were identified and retrieved. The data show that detection of clinically significant prostate cancer and differentiation of prostate cancer from non-cancerous tissue using machine-learning and deep learning is feasible with promising results. Some techniques of machine-learning and deep-learning currently seem to be equally good as human radiologists in terms of classification of single lesion according to the PIRADS score. 
650 4 |a artificial intelligence 
650 4 |a biparametric prostate MRI 
650 4 |a cancer detection 
650 4 |a deep-learning 
650 4 |a multiparametric prostate MRI 
650 4 |a PIRADS 
650 4 |a prostate cancer 
650 4 |a radiomics 
700 1 |a Aringhieri, Giacomo  |e VerfasserIn  |4 aut 
700 1 |a Cioni, Dania  |e VerfasserIn  |4 aut 
700 1 |a Neri, Emanuele  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Diagnostics  |d Basel : MDPI, 2011  |g 12(2022), 4, Artikel-ID 799, Seite 1-22  |h Online-Ressource  |w (DE-627)718627814  |w (DE-600)2662336-5  |w (DE-576)365413917  |x 2075-4418  |7 nnas  |a Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer a systematic review 
773 1 8 |g volume:12  |g year:2022  |g number:4  |g elocationid:799  |g pages:1-22  |g extent:22  |a Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer a systematic review 
856 4 0 |u https://doi.org/10.3390/diagnostics12040799  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2075-4418/12/4/799  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240325 
993 |a Article 
994 |a 2022 
998 |g 128817283  |a Michaely, Henrik J. M.  |m 128817283:Michaely, Henrik J. M.  |d 60000  |d 62900  |e 60000PM128817283  |e 62900PM128817283  |k 0/60000/  |k 1/60000/62900/  |p 1  |x j 
999 |a KXP-PPN1884194354  |e 4503451022 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 25.03.2024"],"language":["eng"],"recId":"1884194354","title":[{"title_sort":"Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer","subtitle":"a systematic review","title":"Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer"}],"person":[{"given":"Henrik J. M.","family":"Michaely","role":"aut","roleDisplay":"VerfasserIn","display":"Michaely, Henrik J. M."},{"family":"Aringhieri","given":"Giacomo","display":"Aringhieri, Giacomo","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Cioni, Dania","role":"aut","family":"Cioni","given":"Dania"},{"roleDisplay":"VerfasserIn","display":"Neri, Emanuele","role":"aut","family":"Neri","given":"Emanuele"}],"physDesc":[{"extent":"22 S."}],"relHost":[{"origin":[{"dateIssuedKey":"2011","publisher":"MDPI","dateIssuedDisp":"2011-","publisherPlace":"Basel"}],"id":{"eki":["718627814"],"zdb":["2662336-5"],"issn":["2075-4418"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Diagnostics","subtitle":"open access journal","title_sort":"Diagnostics"}],"pubHistory":["1.2011 -"],"part":{"year":"2022","issue":"4","pages":"1-22","volume":"12","text":"12(2022), 4, Artikel-ID 799, Seite 1-22","extent":"22"},"note":["Gesehen am 28.05.2020"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer a systematic reviewDiagnostics","language":["eng"],"recId":"718627814"}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"24 March 2022"}],"id":{"doi":["10.3390/diagnostics12040799"],"eki":["1884194354"]},"name":{"displayForm":["Henrik J. Michaely, Giacomo Aringhieri, Dania Cioni and Emanuele Neri"]}} 
SRT |a MICHAELYHECURRENTVAL2420