Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer: a systematic review
Prostate cancer detection with magnetic resonance imaging is based on a standardized MRI-protocol according to the PI-RADS guidelines including morphologic imaging, diffusion weighted imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced perfusion is often omitted...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
24 March 2022
|
| In: |
Diagnostics
Year: 2022, Jahrgang: 12, Heft: 4, Pages: 1-22 |
| ISSN: | 2075-4418 |
| DOI: | 10.3390/diagnostics12040799 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/diagnostics12040799 Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2075-4418/12/4/799 |
| Verfasserangaben: | Henrik J. Michaely, Giacomo Aringhieri, Dania Cioni and Emanuele Neri |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1884194354 | ||
| 003 | DE-627 | ||
| 005 | 20240703160244.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240325s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3390/diagnostics12040799 |2 doi | |
| 035 | |a (DE-627)1884194354 | ||
| 035 | |a (DE-599)KXP1884194354 | ||
| 035 | |a (OCoLC)1443657450 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Michaely, Henrik J. M. |d 1976- |e VerfasserIn |0 (DE-588)128817283 |0 (DE-627)381568407 |0 (DE-576)297347624 |4 aut | |
| 245 | 1 | 0 | |a Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer |b a systematic review |c Henrik J. Michaely, Giacomo Aringhieri, Dania Cioni and Emanuele Neri |
| 264 | 1 | |c 24 March 2022 | |
| 300 | |a 22 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 25.03.2024 | ||
| 520 | |a Prostate cancer detection with magnetic resonance imaging is based on a standardized MRI-protocol according to the PI-RADS guidelines including morphologic imaging, diffusion weighted imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced perfusion is often omitted resulting in a biparametric prostate MRI protocol. The intention of this review is to analyze the current value of biparametric prostate MRI in combination with methods of machine-learning and deep learning in the detection, grading, and characterization of prostate cancer; if available a direct comparison with human radiologist performance was performed. PubMed was systematically queried and 29 appropriate studies were identified and retrieved. The data show that detection of clinically significant prostate cancer and differentiation of prostate cancer from non-cancerous tissue using machine-learning and deep learning is feasible with promising results. Some techniques of machine-learning and deep-learning currently seem to be equally good as human radiologists in terms of classification of single lesion according to the PIRADS score. | ||
| 650 | 4 | |a artificial intelligence | |
| 650 | 4 | |a biparametric prostate MRI | |
| 650 | 4 | |a cancer detection | |
| 650 | 4 | |a deep-learning | |
| 650 | 4 | |a multiparametric prostate MRI | |
| 650 | 4 | |a PIRADS | |
| 650 | 4 | |a prostate cancer | |
| 650 | 4 | |a radiomics | |
| 700 | 1 | |a Aringhieri, Giacomo |e VerfasserIn |4 aut | |
| 700 | 1 | |a Cioni, Dania |e VerfasserIn |4 aut | |
| 700 | 1 | |a Neri, Emanuele |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Diagnostics |d Basel : MDPI, 2011 |g 12(2022), 4, Artikel-ID 799, Seite 1-22 |h Online-Ressource |w (DE-627)718627814 |w (DE-600)2662336-5 |w (DE-576)365413917 |x 2075-4418 |7 nnas |a Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer a systematic review |
| 773 | 1 | 8 | |g volume:12 |g year:2022 |g number:4 |g elocationid:799 |g pages:1-22 |g extent:22 |a Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer a systematic review |
| 856 | 4 | 0 | |u https://doi.org/10.3390/diagnostics12040799 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.mdpi.com/2075-4418/12/4/799 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240325 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 128817283 |a Michaely, Henrik J. M. |m 128817283:Michaely, Henrik J. M. |d 60000 |d 62900 |e 60000PM128817283 |e 62900PM128817283 |k 0/60000/ |k 1/60000/62900/ |p 1 |x j | ||
| 999 | |a KXP-PPN1884194354 |e 4503451022 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 25.03.2024"],"language":["eng"],"recId":"1884194354","title":[{"title_sort":"Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer","subtitle":"a systematic review","title":"Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer"}],"person":[{"given":"Henrik J. M.","family":"Michaely","role":"aut","roleDisplay":"VerfasserIn","display":"Michaely, Henrik J. M."},{"family":"Aringhieri","given":"Giacomo","display":"Aringhieri, Giacomo","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Cioni, Dania","role":"aut","family":"Cioni","given":"Dania"},{"roleDisplay":"VerfasserIn","display":"Neri, Emanuele","role":"aut","family":"Neri","given":"Emanuele"}],"physDesc":[{"extent":"22 S."}],"relHost":[{"origin":[{"dateIssuedKey":"2011","publisher":"MDPI","dateIssuedDisp":"2011-","publisherPlace":"Basel"}],"id":{"eki":["718627814"],"zdb":["2662336-5"],"issn":["2075-4418"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Diagnostics","subtitle":"open access journal","title_sort":"Diagnostics"}],"pubHistory":["1.2011 -"],"part":{"year":"2022","issue":"4","pages":"1-22","volume":"12","text":"12(2022), 4, Artikel-ID 799, Seite 1-22","extent":"22"},"note":["Gesehen am 28.05.2020"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Current value of biparametric prostate MRI with machine-learning or deep-learning in the detection, grading, and characterization of prostate cancer a systematic reviewDiagnostics","language":["eng"],"recId":"718627814"}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"24 March 2022"}],"id":{"doi":["10.3390/diagnostics12040799"],"eki":["1884194354"]},"name":{"displayForm":["Henrik J. Michaely, Giacomo Aringhieri, Dania Cioni and Emanuele Neri"]}} | ||
| SRT | |a MICHAELYHECURRENTVAL2420 | ||