Notes on Sacks' splitting theorem

We explore the complexity of Sacks’ Splitting Theorem in terms of the mind change functions associated with the members of the splits. We prove that, for any c.e. set A, there are low computably enumerable sets A0⊔A1=AA0⊔A1=AA_0\sqcup A_1=A splitting A with A0A0A_0 and A1A1A_1 both totally ω2ω2\omeg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ambos-Spies, Klaus (VerfasserIn) , Downey, Rod G. (VerfasserIn) , Monath, Martin (VerfasserIn) , Ng, Keng Meng (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 26 October 2023
In: The journal of symbolic logic
Year: 2023, Pages: 1-30
ISSN:1943-5886
DOI:10.1017/jsl.2023.77
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1017/jsl.2023.77
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/notes-on-sacks-splitting-theorem/0ACA242AC51502CAF19C405DDD2C54AE
Volltext
Verfasserangaben:Klaus Ambos-Spies, Rod G. Downey, Martin Monath, and Keng Meng Ng
Beschreibung
Zusammenfassung:We explore the complexity of Sacks’ Splitting Theorem in terms of the mind change functions associated with the members of the splits. We prove that, for any c.e. set A, there are low computably enumerable sets A0⊔A1=AA0⊔A1=AA_0\sqcup A_1=A splitting A with A0A0A_0 and A1A1A_1 both totally ω2ω2\omega ^2-c.a. in terms of the Downey-Greenberg hierarchy, and this result cannot be improved to totally ωω\omega -c.a. as shown in [9]. We also show that if cone avoidance is added then there is no level below ε0ε0\varepsilon _0 which can be used to characterize the complexity of A1A1A_1 and A2A2A_2.
Beschreibung:Gesehen am 26.03.2024
Beschreibung:Online Resource
ISSN:1943-5886
DOI:10.1017/jsl.2023.77