Notes on Sacks' splitting theorem
We explore the complexity of Sacks’ Splitting Theorem in terms of the mind change functions associated with the members of the splits. We prove that, for any c.e. set A, there are low computably enumerable sets A0⊔A1=AA0⊔A1=AA_0\sqcup A_1=A splitting A with A0A0A_0 and A1A1A_1 both totally ω2ω2\omeg...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
26 October 2023
|
| In: |
The journal of symbolic logic
Year: 2023, Pages: 1-30 |
| ISSN: | 1943-5886 |
| DOI: | 10.1017/jsl.2023.77 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1017/jsl.2023.77 Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/notes-on-sacks-splitting-theorem/0ACA242AC51502CAF19C405DDD2C54AE |
| Verfasserangaben: | Klaus Ambos-Spies, Rod G. Downey, Martin Monath, and Keng Meng Ng |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1884364535 | ||
| 003 | DE-627 | ||
| 005 | 20240703160836.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240326s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1017/jsl.2023.77 |2 doi | |
| 035 | |a (DE-627)1884364535 | ||
| 035 | |a (DE-599)KXP1884364535 | ||
| 035 | |a (OCoLC)1443667822 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Ambos-Spies, Klaus |d 1951- |e VerfasserIn |0 (DE-588)141551607 |0 (DE-627)629951861 |0 (DE-576)16006810X |4 aut | |
| 245 | 1 | 0 | |a Notes on Sacks' splitting theorem |c Klaus Ambos-Spies, Rod G. Downey, Martin Monath, and Keng Meng Ng |
| 264 | 1 | |c 26 October 2023 | |
| 300 | |a 30 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 26.03.2024 | ||
| 520 | |a We explore the complexity of Sacks’ Splitting Theorem in terms of the mind change functions associated with the members of the splits. We prove that, for any c.e. set A, there are low computably enumerable sets A0⊔A1=AA0⊔A1=AA_0\sqcup A_1=A splitting A with A0A0A_0 and A1A1A_1 both totally ω2ω2\omega ^2-c.a. in terms of the Downey-Greenberg hierarchy, and this result cannot be improved to totally ωω\omega -c.a. as shown in [9]. We also show that if cone avoidance is added then there is no level below ε0ε0\varepsilon _0 which can be used to characterize the complexity of A1A1A_1 and A2A2A_2. | ||
| 650 | 4 | |a 03D25 | |
| 650 | 4 | |a 03D55 | |
| 650 | 4 | |a Downey-Greenberg Hierarchy | |
| 650 | 4 | |a Sacks Splitting Theorem | |
| 650 | 4 | |a totally ω-c.a | |
| 650 | 4 | |a unbounded finite injury | |
| 700 | 1 | |a Downey, Rod G. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Monath, Martin |e VerfasserIn |4 aut | |
| 700 | 1 | |a Ng, Keng Meng |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t The journal of symbolic logic |d Cambridge : Cambridge Univ. Press, 1936 |g (2023), online ahead of print |h Online-Ressource |w (DE-627)312113447 |w (DE-600)2010607-5 |w (DE-576)094449333 |x 1943-5886 |7 nnas |a Notes on Sacks' splitting theorem |
| 773 | 1 | 8 | |g year:2023 |g pages:1-30 |g extent:30 |a Notes on Sacks' splitting theorem |
| 856 | 4 | 0 | |u https://doi.org/10.1017/jsl.2023.77 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/notes-on-sacks-splitting-theorem/0ACA242AC51502CAF19C405DDD2C54AE |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240326 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 141551607 |a Ambos-Spies, Klaus |m 141551607:Ambos-Spies, Klaus |d 110000 |e 110000PA141551607 |k 0/110000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1884364535 |e 4504046148 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"role":"aut","display":"Ambos-Spies, Klaus","roleDisplay":"VerfasserIn","given":"Klaus","family":"Ambos-Spies"},{"roleDisplay":"VerfasserIn","display":"Downey, Rod G.","role":"aut","family":"Downey","given":"Rod G."},{"given":"Martin","family":"Monath","role":"aut","display":"Monath, Martin","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Ng, Keng Meng","roleDisplay":"VerfasserIn","given":"Keng Meng","family":"Ng"}],"title":[{"title_sort":"Notes on Sacks' splitting theorem","title":"Notes on Sacks' splitting theorem"}],"language":["eng"],"recId":"1884364535","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 26.03.2024"],"name":{"displayForm":["Klaus Ambos-Spies, Rod G. Downey, Martin Monath, and Keng Meng Ng"]},"id":{"doi":["10.1017/jsl.2023.77"],"eki":["1884364535"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"26 October 2023"}],"relHost":[{"pubHistory":["1.1936 -"],"part":{"pages":"1-30","year":"2023","extent":"30","text":"(2023), online ahead of print"},"note":["Gesehen am 14.11.24"],"disp":"Notes on Sacks' splitting theoremThe journal of symbolic logic","type":{"media":"Online-Ressource","bibl":"periodical"},"corporate":[{"display":"Association for Symbolic Logic","roleDisplay":"Herausgebendes Organ","role":"isb"}],"language":["eng"],"recId":"312113447","title":[{"title":"The journal of symbolic logic","title_sort":"journal of symbolic logic"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"Cambridge Univ. Press ; Assoc.","dateIssuedKey":"1936","dateIssuedDisp":"1936-","publisherPlace":"Cambridge ; Urbana, Ill."}],"id":{"issn":["1943-5886"],"eki":["312113447"],"zdb":["2010607-5"]},"name":{"displayForm":["publ. quarterly by the Association for Symbolic Logic. Ed. by Alonzo Church [u.a.]"]}}],"physDesc":[{"extent":"30 S."}]} | ||
| SRT | |a AMBOSSPIESNOTESONSAC2620 | ||