Notes on Sacks' splitting theorem

We explore the complexity of Sacks’ Splitting Theorem in terms of the mind change functions associated with the members of the splits. We prove that, for any c.e. set A, there are low computably enumerable sets A0⊔A1=AA0⊔A1=AA_0\sqcup A_1=A splitting A with A0A0A_0 and A1A1A_1 both totally ω2ω2\omeg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ambos-Spies, Klaus (VerfasserIn) , Downey, Rod G. (VerfasserIn) , Monath, Martin (VerfasserIn) , Ng, Keng Meng (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 26 October 2023
In: The journal of symbolic logic
Year: 2023, Pages: 1-30
ISSN:1943-5886
DOI:10.1017/jsl.2023.77
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1017/jsl.2023.77
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/notes-on-sacks-splitting-theorem/0ACA242AC51502CAF19C405DDD2C54AE
Volltext
Verfasserangaben:Klaus Ambos-Spies, Rod G. Downey, Martin Monath, and Keng Meng Ng

MARC

LEADER 00000caa a22000002c 4500
001 1884364535
003 DE-627
005 20240703160836.0
007 cr uuu---uuuuu
008 240326s2023 xx |||||o 00| ||eng c
024 7 |a 10.1017/jsl.2023.77  |2 doi 
035 |a (DE-627)1884364535 
035 |a (DE-599)KXP1884364535 
035 |a (OCoLC)1443667822 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Ambos-Spies, Klaus  |d 1951-  |e VerfasserIn  |0 (DE-588)141551607  |0 (DE-627)629951861  |0 (DE-576)16006810X  |4 aut 
245 1 0 |a Notes on Sacks' splitting theorem  |c Klaus Ambos-Spies, Rod G. Downey, Martin Monath, and Keng Meng Ng 
264 1 |c 26 October 2023 
300 |a 30 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.03.2024 
520 |a We explore the complexity of Sacks’ Splitting Theorem in terms of the mind change functions associated with the members of the splits. We prove that, for any c.e. set A, there are low computably enumerable sets A0⊔A1=AA0⊔A1=AA_0\sqcup A_1=A splitting A with A0A0A_0 and A1A1A_1 both totally ω2ω2\omega ^2-c.a. in terms of the Downey-Greenberg hierarchy, and this result cannot be improved to totally ωω\omega -c.a. as shown in [9]. We also show that if cone avoidance is added then there is no level below ε0ε0\varepsilon _0 which can be used to characterize the complexity of A1A1A_1 and A2A2A_2. 
650 4 |a 03D25 
650 4 |a 03D55 
650 4 |a Downey-Greenberg Hierarchy 
650 4 |a Sacks Splitting Theorem 
650 4 |a totally ω-c.a 
650 4 |a unbounded finite injury 
700 1 |a Downey, Rod G.  |e VerfasserIn  |4 aut 
700 1 |a Monath, Martin  |e VerfasserIn  |4 aut 
700 1 |a Ng, Keng Meng  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t The journal of symbolic logic  |d Cambridge : Cambridge Univ. Press, 1936  |g (2023), online ahead of print  |h Online-Ressource  |w (DE-627)312113447  |w (DE-600)2010607-5  |w (DE-576)094449333  |x 1943-5886  |7 nnas  |a Notes on Sacks' splitting theorem 
773 1 8 |g year:2023  |g pages:1-30  |g extent:30  |a Notes on Sacks' splitting theorem 
856 4 0 |u https://doi.org/10.1017/jsl.2023.77  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/notes-on-sacks-splitting-theorem/0ACA242AC51502CAF19C405DDD2C54AE  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240326 
993 |a Article 
994 |a 2023 
998 |g 141551607  |a Ambos-Spies, Klaus  |m 141551607:Ambos-Spies, Klaus  |d 110000  |e 110000PA141551607  |k 0/110000/  |p 1  |x j 
999 |a KXP-PPN1884364535  |e 4504046148 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","display":"Ambos-Spies, Klaus","roleDisplay":"VerfasserIn","given":"Klaus","family":"Ambos-Spies"},{"roleDisplay":"VerfasserIn","display":"Downey, Rod G.","role":"aut","family":"Downey","given":"Rod G."},{"given":"Martin","family":"Monath","role":"aut","display":"Monath, Martin","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Ng, Keng Meng","roleDisplay":"VerfasserIn","given":"Keng Meng","family":"Ng"}],"title":[{"title_sort":"Notes on Sacks' splitting theorem","title":"Notes on Sacks' splitting theorem"}],"language":["eng"],"recId":"1884364535","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 26.03.2024"],"name":{"displayForm":["Klaus Ambos-Spies, Rod G. Downey, Martin Monath, and Keng Meng Ng"]},"id":{"doi":["10.1017/jsl.2023.77"],"eki":["1884364535"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"26 October 2023"}],"relHost":[{"pubHistory":["1.1936 -"],"part":{"pages":"1-30","year":"2023","extent":"30","text":"(2023), online ahead of print"},"note":["Gesehen am 14.11.24"],"disp":"Notes on Sacks' splitting theoremThe journal of symbolic logic","type":{"media":"Online-Ressource","bibl":"periodical"},"corporate":[{"display":"Association for Symbolic Logic","roleDisplay":"Herausgebendes Organ","role":"isb"}],"language":["eng"],"recId":"312113447","title":[{"title":"The journal of symbolic logic","title_sort":"journal of symbolic logic"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"Cambridge Univ. Press ; Assoc.","dateIssuedKey":"1936","dateIssuedDisp":"1936-","publisherPlace":"Cambridge ; Urbana, Ill."}],"id":{"issn":["1943-5886"],"eki":["312113447"],"zdb":["2010607-5"]},"name":{"displayForm":["publ. quarterly by the Association for Symbolic Logic. Ed. by Alonzo Church [u.a.]"]}}],"physDesc":[{"extent":"30 S."}]} 
SRT |a AMBOSSPIESNOTESONSAC2620