Deep learning and differential equations for modeling changes in individual-level latent dynamics between observation periods: research article

When modeling longitudinal biomedical data, often dimensionality reduction as well as dynamic modeling in the resulting latent representation is needed. This can be achieved by artificial neural networks for dimension reduction and differential equations for dynamic modeling of individual-level traj...

Full description

Saved in:
Bibliographic Details
Main Authors: Köber, Göran (Author) , Kalisch, Raffael (Author) , Puhlmann, Lara M.C. (Author) , Chmitorz, Andrea (Author) , Schick, Anita (Author) , Binder, Harald (Author)
Format: Article (Journal)
Language:English
Published: August 2023
In: Biometrical journal
Year: 2023, Volume: 65, Issue: 6, Pages: 1-15
ISSN:1521-4036
DOI:10.1002/bimj.202100381
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/bimj.202100381
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.202100381
Get full text
Author Notes:Göran Köber, Raffael Kalisch, Lara M.C. Puhlmann, Andrea Chmitorz, Anita Schick, Harald Binder

MARC

LEADER 00000caa a2200000 c 4500
001 1884709796
003 DE-627
005 20250116012405.0
007 cr uuu---uuuuu
008 240402s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/bimj.202100381  |2 doi 
035 |a (DE-627)1884709796 
035 |a (DE-599)KXP1884709796 
035 |a (OCoLC)1443668045 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 11  |2 sdnb 
100 1 |a Köber, Göran  |e VerfasserIn  |0 (DE-588)1183940173  |0 (DE-627)1663413908  |4 aut 
245 1 0 |a Deep learning and differential equations for modeling changes in individual-level latent dynamics between observation periods  |b research article  |c Göran Köber, Raffael Kalisch, Lara M.C. Puhlmann, Andrea Chmitorz, Anita Schick, Harald Binder 
264 1 |c August 2023 
300 |b Illustrationen 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 17. März 2023 
500 |a Gesehen am 02.04.2024 
520 |a When modeling longitudinal biomedical data, often dimensionality reduction as well as dynamic modeling in the resulting latent representation is needed. This can be achieved by artificial neural networks for dimension reduction and differential equations for dynamic modeling of individual-level trajectories. However, such approaches so far assume that parameters of individual-level dynamics are constant throughout the observation period. Motivated by an application from psychological resilience research, we propose an extension where different sets of differential equation parameters are allowed for observation subperiods. Still, estimation for intra-individual subperiods is coupled for being able to fit the model also with a relatively small dataset. We subsequently derive prediction targets from individual dynamic models of resilience in the application. These serve as outcomes for predicting resilience from characteristics of individuals, measured at baseline and a follow-up time point, and selecting a small set of important predictors. Our approach is seen to successfully identify individual-level parameters of dynamic models that allow to stably select predictors, that is, resilience factors. Furthermore, we can identify those characteristics of individuals that are the most promising for updates at follow-up, which might inform future study design. This underlines the usefulness of our proposed deep dynamic modeling approach with changes in parameters between observation subperiods. 
650 4 |a deep learning 
650 4 |a dynamic modeling 
650 4 |a longitudinal data 
650 4 |a observational data 
650 4 |a variable selection 
700 1 |8 1\p  |a Kalisch, Raffael  |d 1972-  |e VerfasserIn  |0 (DE-588)124232981  |0 (DE-627)085724742  |0 (DE-576)294079440  |4 aut 
700 1 |a Puhlmann, Lara M.C.  |e VerfasserIn  |4 aut 
700 1 |a Chmitorz, Andrea  |e VerfasserIn  |4 aut 
700 1 |a Schick, Anita  |d 1984-  |e VerfasserIn  |0 (DE-588)103862262X  |0 (DE-627)766246566  |0 (DE-576)259635510  |4 aut 
700 1 |8 2\p  |a Binder, Harald  |d 1976-  |e VerfasserIn  |0 (DE-588)131507982  |0 (DE-627)510156851  |0 (DE-576)253863007  |4 aut 
773 0 8 |i Enthalten in  |t Biometrical journal  |d Berlin : Wiley-VCH, 1977  |g 65(2023), 6 vom: Aug., Seite 1-15  |h Online-Ressource  |w (DE-627)271350229  |w (DE-600)1479920-0  |w (DE-576)078590868  |x 1521-4036  |7 nnas  |a Deep learning and differential equations for modeling changes in individual-level latent dynamics between observation periods research article 
773 1 8 |g volume:65  |g year:2023  |g number:6  |g month:08  |g pages:1-15  |g extent:15  |a Deep learning and differential equations for modeling changes in individual-level latent dynamics between observation periods research article 
856 4 0 |u https://doi.org/10.1002/bimj.202100381  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.202100381  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20240402 
993 |a Article 
994 |a 2023 
998 |g 103862262X  |a Schick, Anita  |m 103862262X:Schick, Anita  |d 60000  |e 60000PS103862262X  |k 0/60000/  |p 5 
999 |a KXP-PPN1884709796  |e 4506304497 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"title":[{"subtitle":"research article","title":"Deep learning and differential equations for modeling changes in individual-level latent dynamics between observation periods","title_sort":"Deep learning and differential equations for modeling changes in individual-level latent dynamics between observation periods"}],"note":["Online veröffentlicht: 17. März 2023","Gesehen am 02.04.2024"],"relHost":[{"part":{"year":"2023","text":"65(2023), 6 vom: Aug., Seite 1-15","volume":"65","extent":"15","pages":"1-15","issue":"6"},"language":["eng","ger"],"title":[{"title_sort":"Biometrical journal","title":"Biometrical journal"}],"pubHistory":["Volume 19, issue 1 (1977)-"],"origin":[{"publisherPlace":"Berlin","dateIssuedDisp":"1977-","publisher":"Wiley-VCH","dateIssuedKey":"1977"}],"recId":"271350229","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 17.04.07"],"id":{"issn":["1521-4036"],"zdb":["1479920-0"],"doi":["10.1002/(ISSN)1521-4036"],"eki":["271350229"]},"disp":"Deep learning and differential equations for modeling changes in individual-level latent dynamics between observation periods research articleBiometrical journal","physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"15 S.","noteIll":"Illustrationen"}],"id":{"doi":["10.1002/bimj.202100381"],"eki":["1884709796"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1884709796","origin":[{"dateIssuedDisp":"August 2023","dateIssuedKey":"2023"}],"person":[{"display":"Köber, Göran","given":"Göran","role":"aut","family":"Köber"},{"given":"Raffael","role":"aut","display":"Kalisch, Raffael","family":"Kalisch"},{"display":"Puhlmann, Lara M.C.","role":"aut","given":"Lara M.C.","family":"Puhlmann"},{"given":"Andrea","role":"aut","display":"Chmitorz, Andrea","family":"Chmitorz"},{"family":"Schick","given":"Anita","role":"aut","display":"Schick, Anita"},{"display":"Binder, Harald","given":"Harald","role":"aut","family":"Binder"}],"name":{"displayForm":["Göran Köber, Raffael Kalisch, Lara M.C. Puhlmann, Andrea Chmitorz, Anita Schick, Harald Binder"]}} 
SRT |a KOEBERGOERDEEPLEARNI2023