Deep learning in cancer pathology: a new generation of clinical biomarkers

Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers. However, the growing number of these complex biomarkers tends to increase the cost and time for decision-making in routine daily oncology practice; furthermore, biomarkers often require tumour tissue on top of rou...

Full description

Saved in:
Bibliographic Details
Main Authors: Echle, Amelie (Author) , Rindtorff, Niklas (Author) , Brinker, Titus Josef (Author) , Lüdde, Tom (Author) , Pearson, Alexander Thomas (Author) , Kather, Jakob Nikolas (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: British journal of cancer
Year: 2021, Volume: 124, Issue: 4, Pages: 686-696
ISSN:1532-1827
DOI:10.1038/s41416-020-01122-x
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41416-020-01122-x
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41416-020-01122-x
Get full text
Author Notes:Amelie Echle, Niklas Timon Rindtorff, Titus Josef Brinker, Tom Luedde, Alexander Thomas Pearson and Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 188516906X
003 DE-627
005 20240703162822.0
007 cr uuu---uuuuu
008 240405s2021 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41416-020-01122-x  |2 doi 
035 |a (DE-627)188516906X 
035 |a (DE-599)KXP188516906X 
035 |a (OCoLC)1443668301 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Echle, Amelie  |d 1996-  |e VerfasserIn  |0 (DE-588)1224421035  |0 (DE-627)174377656X  |4 aut 
245 1 0 |a Deep learning in cancer pathology  |b a new generation of clinical biomarkers  |c Amelie Echle, Niklas Timon Rindtorff, Titus Josef Brinker, Tom Luedde, Alexander Thomas Pearson and Jakob Nikolas Kather 
264 1 |c 2021 
300 |b Illustrationen 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 18. November 2020 
500 |a Gesehen am 05.04.2024 
520 |a Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers. However, the growing number of these complex biomarkers tends to increase the cost and time for decision-making in routine daily oncology practice; furthermore, biomarkers often require tumour tissue on top of routine diagnostic material. Nevertheless, routinely available tumour tissue contains an abundance of clinically relevant information that is currently not fully exploited. Advances in deep learning (DL), an artificial intelligence (AI) technology, have enabled the extraction of previously hidden information directly from routine histology images of cancer, providing potentially clinically useful information. Here, we outline emerging concepts of how DL can extract biomarkers directly from histology images and summarise studies of basic and advanced image analysis for cancer histology. Basic image analysis tasks include detection, grading and subtyping of tumour tissue in histology images; they are aimed at automating pathology workflows and consequently do not immediately translate into clinical decisions. Exceeding such basic approaches, DL has also been used for advanced image analysis tasks, which have the potential of directly affecting clinical decision-making processes. These advanced approaches include inference of molecular features, prediction of survival and end-to-end prediction of therapy response. Predictions made by such DL systems could simplify and enrich clinical decision-making, but require rigorous external validation in clinical settings. 
650 4 |a Cancer imaging 
650 4 |a Computational science 
650 4 |a Targeted therapies 
650 4 |a Tumour biomarkers 
700 1 |a Rindtorff, Niklas  |d 1995-  |e VerfasserIn  |0 (DE-588)1163560782  |0 (DE-627)1027881793  |0 (DE-576)508051479  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
700 1 |a Lüdde, Tom  |d 1974-  |e VerfasserIn  |0 (DE-588)123687292  |0 (DE-627)082707960  |0 (DE-576)293827389  |4 aut 
700 1 |a Pearson, Alexander Thomas  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t British journal of cancer  |d Edinburgh : Nature Publ. Group, 1947  |g 124(2021), 4, Seite 686-696  |h Online-Ressource  |w (DE-627)320420094  |w (DE-600)2002452-6  |w (DE-576)103746854  |x 1532-1827  |7 nnas  |a Deep learning in cancer pathology a new generation of clinical biomarkers 
773 1 8 |g volume:124  |g year:2021  |g number:4  |g pages:686-696  |g extent:11  |a Deep learning in cancer pathology a new generation of clinical biomarkers 
856 4 0 |u https://doi.org/10.1038/s41416-020-01122-x  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41416-020-01122-x  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240405 
993 |a Article 
994 |a 2021 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 6  |y j 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 910000  |d 911300  |e 910000PB1156309395  |e 911300PB1156309395  |k 0/910000/  |k 1/910000/911300/  |p 3 
998 |g 1163560782  |a Rindtorff, Niklas  |m 1163560782:Rindtorff, Niklas  |d 50000  |e 50000PR1163560782  |k 0/50000/  |p 2 
999 |a KXP-PPN188516906X  |e 450767168X 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Deep learning in cancer pathology","title":"Deep learning in cancer pathology","subtitle":"a new generation of clinical biomarkers"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"role":"aut","family":"Echle","roleDisplay":"VerfasserIn","display":"Echle, Amelie","given":"Amelie"},{"family":"Rindtorff","roleDisplay":"VerfasserIn","display":"Rindtorff, Niklas","given":"Niklas","role":"aut"},{"role":"aut","family":"Brinker","given":"Titus Josef","roleDisplay":"VerfasserIn","display":"Brinker, Titus Josef"},{"roleDisplay":"VerfasserIn","given":"Tom","display":"Lüdde, Tom","family":"Lüdde","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Pearson, Alexander Thomas","given":"Alexander Thomas","family":"Pearson","role":"aut"},{"role":"aut","family":"Kather","roleDisplay":"VerfasserIn","display":"Kather, Jakob Nikolas","given":"Jakob Nikolas"}],"name":{"displayForm":["Amelie Echle, Niklas Timon Rindtorff, Titus Josef Brinker, Tom Luedde, Alexander Thomas Pearson and Jakob Nikolas Kather"]},"id":{"eki":["188516906X"],"doi":["10.1038/s41416-020-01122-x"]},"recId":"188516906X","language":["eng"],"note":["Online veröffentlicht: 18. November 2020","Gesehen am 05.04.2024"],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 27.10.25"],"language":["eng"],"disp":"Deep learning in cancer pathology a new generation of clinical biomarkersBritish journal of cancer","origin":[{"publisherPlace":"Edinburgh ; Edinburgh","dateIssuedDisp":"1947-","publisher":"Nature Publ. Group ; Churchill Livingstone","dateIssuedKey":"1947"}],"part":{"issue":"4","year":"2021","pages":"686-696","volume":"124","text":"124(2021), 4, Seite 686-696","extent":"11"},"type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"BJC"}],"title":[{"title_sort":"British journal of cancer","title":"British journal of cancer","subtitle":"BJC"}],"recId":"320420094","id":{"issn":["1532-1827"],"zdb":["2002452-6"],"eki":["320420094"]},"pubHistory":["Volume 1, issue 1 (1 March 1947)-"]}],"physDesc":[{"noteIll":"Illustrationen","extent":"11 S."}],"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}]} 
SRT |a ECHLEAMELIDEEPLEARNI2021