Forecasting local hospital bed demand for COVID-19 using on-request simulations

Accurate forecasting of hospital bed demand is crucial during infectious disease epidemics to avoid overwhelming healthcare facilities. To address this, we developed an intuitive online tool for individual hospitals to forecast COVID-19 bed demand. The tool utilizes local data, including incidence,...

Full description

Saved in:
Bibliographic Details
Main Authors: Kociurzynski, Raisa (Author) , D’Ambrosio, Angelo (Author) , Papathanassopoulos, Alexis (Author) , Bürkin, Fabian (Author) , Hertweck, Stephan (Author) , Eichel, Vanessa (Author) , Heininger, Alexandra (Author) , Liese, Jan (Author) , Mutters, Nico T. (Author) , Peter, Silke (Author) , Wismath, Nina (Author) , Wolf, Sophia (Author) , Grundmann, Hajo (Author) , Donker, Tjibbe (Author)
Format: Article (Journal)
Language:English
Published: 03 December 2023
In: Scientific reports
Year: 2023, Volume: 13, Pages: 1-15
ISSN:2045-2322
DOI:10.1038/s41598-023-48601-8
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41598-023-48601-8
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41598-023-48601-8
Get full text
Author Notes:Raisa Kociurzynski, Angelo D’Ambrosio, Alexis Papathanassopoulos, Fabian Bürkin, Stephan Hertweck, Vanessa M. Eichel, Alexandra Heininger, Jan Liese, Nico T. Mutters, Silke Peter, Nina Wismath, Sophia Wolf, Hajo Grundmann & Tjibbe Donker

MARC

LEADER 00000caa a2200000 c 4500
001 1885644078
003 DE-627
005 20250116221034.0
007 cr uuu---uuuuu
008 240411s2023 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-023-48601-8  |2 doi 
035 |a (DE-627)1885644078 
035 |a (DE-599)KXP1885644078 
035 |a (OCoLC)1443668734 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kociurzynski, Raisa  |e VerfasserIn  |0 (DE-588)1325881945  |0 (DE-627)1885644914  |4 aut 
245 1 0 |a Forecasting local hospital bed demand for COVID-19 using on-request simulations  |c Raisa Kociurzynski, Angelo D’Ambrosio, Alexis Papathanassopoulos, Fabian Bürkin, Stephan Hertweck, Vanessa M. Eichel, Alexandra Heininger, Jan Liese, Nico T. Mutters, Silke Peter, Nina Wismath, Sophia Wolf, Hajo Grundmann & Tjibbe Donker 
264 1 |c 03 December 2023 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.04.2024 
520 |a Accurate forecasting of hospital bed demand is crucial during infectious disease epidemics to avoid overwhelming healthcare facilities. To address this, we developed an intuitive online tool for individual hospitals to forecast COVID-19 bed demand. The tool utilizes local data, including incidence, vaccination, and bed occupancy data, at customizable geographical resolutions. Users can specify their hospital’s catchment area and adjust the initial number of COVID-19 occupied beds. We assessed the model’s performance by forecasting ICU bed occupancy for several university hospitals and regions in Germany. The model achieves optimal results when the selected catchment area aligns with the hospital’s local catchment. While expanding the catchment area reduces accuracy, it improves precision. However, forecasting performance diminishes during epidemic turning points. Incorporating variants of concern slightly decreases precision around turning points but does not significantly impact overall bed occupancy results. Our study highlights the significance of using local data for epidemic forecasts. Forecasts based on the hospital’s specific catchment area outperform those relying on national or state-level data, striking a better balance between accuracy and precision. These hospital-specific bed demand forecasts offer valuable insights for hospital planning, such as adjusting elective surgeries to create additional bed capacity promptly. 
650 4 |a Computational models 
650 4 |a Computational platforms and environments 
650 4 |a Computer modelling 
650 4 |a Epidemiology 
650 4 |a Infectious diseases 
650 4 |a Population dynamics 
650 4 |a Statistical methods 
650 4 |a Stochastic modelling 
650 4 |a Time series 
650 4 |a Vaccines 
650 4 |a Viral infection 
700 1 |a D’Ambrosio, Angelo  |e VerfasserIn  |4 aut 
700 1 |8 1\p  |a Papathanassopoulos, Alexis  |e VerfasserIn  |0 (DE-588)1313630950  |0 (DE-627)1876211423  |4 aut 
700 1 |8 2\p  |a Bürkin, Fabian  |e VerfasserIn  |0 (DE-588)1152228889  |0 (DE-627)1013703820  |0 (DE-576)499741242  |4 aut 
700 1 |a Hertweck, Stephan  |e VerfasserIn  |4 aut 
700 1 |a Eichel, Vanessa  |e VerfasserIn  |0 (DE-588)1201123135  |0 (DE-627)1684403227  |4 aut 
700 1 |a Heininger, Alexandra  |d 1962-  |e VerfasserIn  |0 (DE-588)112271219  |0 (DE-627)58327725X  |0 (DE-576)289726204  |4 aut 
700 1 |8 3\p  |a Liese, Jan  |d 1974-  |e VerfasserIn  |0 (DE-588)128820179  |0 (DE-627)381570533  |0 (DE-576)187621810  |4 aut 
700 1 |a Mutters, Nico T.  |d 1980-  |e VerfasserIn  |0 (DE-588)136849687  |0 (DE-627)694710199  |0 (DE-576)288598962  |4 aut 
700 1 |8 4\p  |a Peter, Silke  |d 1975-  |e VerfasserIn  |0 (DE-588)130120863  |0 (DE-627)49170982X  |0 (DE-576)298009161  |4 aut 
700 1 |a Wismath, Nina  |d 1982-  |e VerfasserIn  |0 (DE-588)1062581792  |0 (DE-627)80547935X  |0 (DE-576)419935363  |4 aut 
700 1 |a Wolf, Sophia  |e VerfasserIn  |4 aut 
700 1 |a Grundmann, Hajo  |e VerfasserIn  |0 (DE-588)1185535144  |0 (DE-627)1664886672  |4 aut 
700 1 |a Donker, Tjibbe  |e VerfasserIn  |0 (DE-588)1222469561  |0 (DE-627)1741526787  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 13(2023) vom: Dez., Seite 1-15  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Forecasting local hospital bed demand for COVID-19 using on-request simulations 
773 1 8 |g volume:13  |g year:2023  |g month:12  |g pages:1-15  |g extent:15  |a Forecasting local hospital bed demand for COVID-19 using on-request simulations 
856 4 0 |u https://doi.org/10.1038/s41598-023-48601-8  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-023-48601-8  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 3\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 4\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20240411 
993 |a Article 
994 |a 2023 
998 |g 1062581792  |a Wismath, Nina  |m 1062581792:Wismath, Nina  |d 60000  |e 60000PW1062581792  |k 0/60000/  |p 11 
998 |g 136849687  |a Mutters, Nico T.  |m 136849687:Mutters, Nico T.  |d 50000  |e 50000PM136849687  |k 0/50000/  |p 9 
998 |g 112271219  |a Heininger, Alexandra  |m 112271219:Heininger, Alexandra  |d 60000  |e 60000PH112271219  |k 0/60000/  |p 7 
998 |g 1201123135  |a Eichel, Vanessa  |m 1201123135:Eichel, Vanessa  |p 6 
999 |a KXP-PPN1885644078  |e 4510676190 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Forecasting local hospital bed demand for COVID-19 using on-request simulations","title":"Forecasting local hospital bed demand for COVID-19 using on-request simulations"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"display":"Kociurzynski, Raisa","roleDisplay":"VerfasserIn","given":"Raisa","family":"Kociurzynski","role":"aut"},{"role":"aut","given":"Angelo","roleDisplay":"VerfasserIn","display":"D’Ambrosio, Angelo","family":"D’Ambrosio"},{"role":"aut","family":"Papathanassopoulos","given":"Alexis","roleDisplay":"VerfasserIn","display":"Papathanassopoulos, Alexis"},{"role":"aut","family":"Bürkin","display":"Bürkin, Fabian","roleDisplay":"VerfasserIn","given":"Fabian"},{"family":"Hertweck","roleDisplay":"VerfasserIn","display":"Hertweck, Stephan","given":"Stephan","role":"aut"},{"role":"aut","family":"Eichel","given":"Vanessa","roleDisplay":"VerfasserIn","display":"Eichel, Vanessa"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Heininger, Alexandra","given":"Alexandra","family":"Heininger"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Liese, Jan","given":"Jan","family":"Liese"},{"role":"aut","roleDisplay":"VerfasserIn","given":"Nico T.","display":"Mutters, Nico T.","family":"Mutters"},{"family":"Peter","display":"Peter, Silke","roleDisplay":"VerfasserIn","given":"Silke","role":"aut"},{"role":"aut","family":"Wismath","display":"Wismath, Nina","roleDisplay":"VerfasserIn","given":"Nina"},{"role":"aut","given":"Sophia","roleDisplay":"VerfasserIn","display":"Wolf, Sophia","family":"Wolf"},{"role":"aut","family":"Grundmann","given":"Hajo","roleDisplay":"VerfasserIn","display":"Grundmann, Hajo"},{"role":"aut","display":"Donker, Tjibbe","roleDisplay":"VerfasserIn","given":"Tjibbe","family":"Donker"}],"name":{"displayForm":["Raisa Kociurzynski, Angelo D’Ambrosio, Alexis Papathanassopoulos, Fabian Bürkin, Stephan Hertweck, Vanessa M. Eichel, Alexandra Heininger, Jan Liese, Nico T. Mutters, Silke Peter, Nina Wismath, Sophia Wolf, Hajo Grundmann & Tjibbe Donker"]},"id":{"doi":["10.1038/s41598-023-48601-8"],"eki":["1885644078"]},"recId":"1885644078","language":["eng"],"note":["Gesehen am 11.04.2024"],"relHost":[{"id":{"zdb":["2615211-3"],"eki":["663366712"],"issn":["2045-2322"]},"recId":"663366712","pubHistory":["1, article number 1 (2011)-"],"origin":[{"dateIssuedDisp":"2011-","publisherPlace":"[London] ; London","publisher":"Springer Nature ; Nature Publishing Group","dateIssuedKey":"2011"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 12.07.24"],"part":{"text":"13(2023) vom: Dez., Seite 1-15","extent":"15","volume":"13","pages":"1-15","year":"2023"},"physDesc":[{"extent":"Online-Ressource"}],"disp":"Forecasting local hospital bed demand for COVID-19 using on-request simulationsScientific reports","language":["eng"],"title":[{"title_sort":"Scientific reports","title":"Scientific reports"}]}],"physDesc":[{"extent":"15 S."}],"origin":[{"dateIssuedDisp":"03 December 2023","dateIssuedKey":"2023"}]} 
SRT |a KOCIURZYNSFORECASTIN0320