Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images

Background - Sentinel lymph node (SLN) status is a clinically important prognostic biomarker in breast cancer and is used to guide therapy, especially for hormone receptor-positive, HER2-negative cases. However, invasive lymph node staging is increasingly omitted before therapy, and studies such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Marmé, Frederik (VerfasserIn) , Krieghoff-Henning, Eva (VerfasserIn) , Gerber, Bernd (VerfasserIn) , Schmitt, Max (VerfasserIn) , Zahm, Dirk-Michael (VerfasserIn) , Bauerschlag, Dirk Olaf (VerfasserIn) , Forstbauer, Helmut (VerfasserIn) , Hildebrandt, Guido (VerfasserIn) , Ataseven, Beyhan (VerfasserIn) , Brodkorb, Tobias (VerfasserIn) , Denkert, Carsten (VerfasserIn) , Stachs, Angrit (VerfasserIn) , Krug, David (VerfasserIn) , Heil, Jörg (VerfasserIn) , Golatta, Michael (VerfasserIn) , Kühn, Thorsten (VerfasserIn) , Nekljudova, Valentina (VerfasserIn) , Gaiser, Timo (VerfasserIn) , Schönmehl, Rebecca (VerfasserIn) , Brochhausen, Christoph (VerfasserIn) , Loibl, Sibylle (VerfasserIn) , Reimer, Toralf (VerfasserIn) , Brinker, Titus Josef (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 2023
In: European journal of cancer
Year: 2023, Jahrgang: 195, Pages: 1-6
ISSN:1879-0852
DOI:10.1016/j.ejca.2023.113390
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.ejca.2023.113390
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0959804923006925
Volltext
Verfasserangaben:Frederik Marmé, Eva Krieghoff-Henning, Bernd Gerber, Max Schmitt, Dirk-Michael Zahm, Dirk Bauerschlag, Helmut Forstbauer, Guido Hildebrandt, Beyhan Ataseven, Tobias Brodkorb, Carsten Denkert, Angrit Stachs, David Krug, Jörg Heil, Michael Golatta, Thorsten Kühn, Valentina Nekljudova, Timo Gaiser, Rebecca Schönmehl, Christoph Brochhausen, Sibylle Loibl, Toralf Reimer, Titus J. Brinker

MARC

LEADER 00000caa a2200000 c 4500
001 188592609X
003 DE-627
005 20240703164940.0
007 cr uuu---uuuuu
008 240416s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2023.113390  |2 doi 
035 |a (DE-627)188592609X 
035 |a (DE-599)KXP188592609X 
035 |a (OCoLC)1443668902 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Marmé, Frederik  |d 1974-  |e VerfasserIn  |0 (DE-588)132561972  |0 (DE-627)52394893X  |0 (DE-576)299226549  |4 aut 
245 1 0 |a Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images  |c Frederik Marmé, Eva Krieghoff-Henning, Bernd Gerber, Max Schmitt, Dirk-Michael Zahm, Dirk Bauerschlag, Helmut Forstbauer, Guido Hildebrandt, Beyhan Ataseven, Tobias Brodkorb, Carsten Denkert, Angrit Stachs, David Krug, Jörg Heil, Michael Golatta, Thorsten Kühn, Valentina Nekljudova, Timo Gaiser, Rebecca Schönmehl, Christoph Brochhausen, Sibylle Loibl, Toralf Reimer, Titus J. Brinker 
264 1 |c December 2023 
300 |b Diagramme 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 18 October 2023, Version of Record 25 October 2023 
500 |a Gesehen am 16.04.2024 
520 |a Background - Sentinel lymph node (SLN) status is a clinically important prognostic biomarker in breast cancer and is used to guide therapy, especially for hormone receptor-positive, HER2-negative cases. However, invasive lymph node staging is increasingly omitted before therapy, and studies such as the randomised Intergroup Sentinel Mamma (INSEMA) trial address the potential for further de-escalation of axillary surgery. Therefore, it would be helpful to accurately predict the pretherapeutic sentinel status using medical images. - Methods - Using a ResNet 50 architecture pretrained on ImageNet and a previously successful strategy, we trained deep learning (DL)-based image analysis algorithms to predict sentinel status on hematoxylin/eosin-stained images of predominantly luminal, primary breast tumours from the INSEMA trial and three additional, independent cohorts (The Cancer Genome Atlas (TCGA) and cohorts from the University hospitals of Mannheim and Regensburg), and compared their performance with that of a logistic regression using clinical data only. Performance on an INSEMA hold-out set was investigated in a blinded manner. - Results - None of the generated image analysis algorithms yielded significantly better than random areas under the receiver operating characteristic curves on the test sets, including the hold-out test set from INSEMA. In contrast, the logistic regression fitted on the Mannheim cohort retained a better than random performance on INSEMA and Regensburg. Including the image analysis model output in the logistic regression did not improve performance further on INSEMA. - Conclusions - Employing DL-based image analysis on histological slides, we could not predict SLN status for unseen cases in the INSEMA trial and other predominantly luminal cohorts. 
650 4 |a Breast cancer 
650 4 |a Deep learning 
650 4 |a Digital biomarker 
650 4 |a Lymph node status 
650 4 |a Sentinel 
700 1 |a Krieghoff-Henning, Eva  |d 1976-  |e VerfasserIn  |0 (DE-588)132407914  |0 (DE-627)52267786X  |0 (DE-576)299126706  |4 aut 
700 1 |a Gerber, Bernd  |d 1957-  |e VerfasserIn  |0 (DE-588)136713238  |0 (DE-627)585337608  |0 (DE-576)301234620  |4 aut 
700 1 |a Schmitt, Max  |e VerfasserIn  |0 (DE-588)1236577469  |0 (DE-627)1761961586  |4 aut 
700 1 |a Zahm, Dirk-Michael  |e VerfasserIn  |4 aut 
700 1 |a Bauerschlag, Dirk Olaf  |d 1972-  |e VerfasserIn  |0 (DE-588)123461022  |0 (DE-627)082568626  |0 (DE-576)293718504  |4 aut 
700 1 |a Forstbauer, Helmut  |e VerfasserIn  |4 aut 
700 1 |a Hildebrandt, Guido  |d 1967-  |e VerfasserIn  |0 (DE-588)124378560  |0 (DE-627)363306161  |0 (DE-576)294145257  |4 aut 
700 1 |a Ataseven, Beyhan  |d 1973-  |e VerfasserIn  |0 (DE-588)121880885  |0 (DE-627)081595190  |0 (DE-576)292934726  |4 aut 
700 1 |a Brodkorb, Tobias  |e VerfasserIn  |4 aut 
700 1 |a Denkert, Carsten  |d 1969-  |e VerfasserIn  |0 (DE-588)118129929  |0 (DE-627)079261124  |0 (DE-576)291730604  |4 aut 
700 1 |a Stachs, Angrit  |d 1969-  |e VerfasserIn  |0 (DE-588)115564403  |0 (DE-627)691410836  |0 (DE-576)289951836  |4 aut 
700 1 |a Krug, David  |e VerfasserIn  |4 aut 
700 1 |a Heil, Jörg  |d 1978-  |e VerfasserIn  |0 (DE-588)132580187  |0 (DE-627)52396160X  |0 (DE-576)299238679  |4 aut 
700 1 |a Golatta, Michael  |d 1974-  |e VerfasserIn  |0 (DE-588)132350386  |0 (DE-627)521535727  |0 (DE-576)299091392  |4 aut 
700 1 |a Kühn, Thorsten  |e VerfasserIn  |4 aut 
700 1 |a Nekljudova, Valentina  |e VerfasserIn  |0 (DE-588)1204517231  |0 (DE-627)1689879912  |4 aut 
700 1 |a Gaiser, Timo  |d 1975-  |e VerfasserIn  |0 (DE-588)1030402280  |0 (DE-627)735221685  |0 (DE-576)378226533  |4 aut 
700 1 |a Schönmehl, Rebecca  |d 1991-  |e VerfasserIn  |0 (DE-588)1324477970  |0 (DE-627)1884336949  |4 aut 
700 1 |a Brochhausen, Christoph  |d 1969-  |e VerfasserIn  |0 (DE-588)123220963  |0 (DE-627)082421226  |0 (DE-576)293610843  |4 aut 
700 1 |a Loibl, Sibylle  |e VerfasserIn  |0 (DE-588)12433024X  |0 (DE-627)085790508  |0 (DE-576)294122753  |4 aut 
700 1 |a Reimer, Toralf  |d 1968-  |e VerfasserIn  |0 (DE-588)114954453  |0 (DE-627)486911314  |0 (DE-576)289814138  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 195(2023), Artikel-ID 113390, Seite 1-6  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images 
773 1 8 |g volume:195  |g year:2023  |g elocationid:113390  |g pages:1-6  |g extent:6  |a Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images 
856 4 0 |u https://doi.org/10.1016/j.ejca.2023.113390  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0959804923006925  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240416 
993 |a Article 
994 |a 2023 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 50000  |e 50000PB1156309395  |k 0/50000/  |p 23  |y j 
998 |g 123220963  |a Brochhausen, Christoph  |m 123220963:Brochhausen, Christoph  |d 60000  |d 63400  |e 60000PB123220963  |e 63400PB123220963  |k 0/60000/  |k 1/60000/63400/  |p 20 
998 |g 1324477970  |a Schönmehl, Rebecca  |m 1324477970:Schönmehl, Rebecca  |d 60000  |d 63400  |e 60000PS1324477970  |e 63400PS1324477970  |k 0/60000/  |k 1/60000/63400/  |p 19 
998 |g 1030402280  |a Gaiser, Timo  |m 1030402280:Gaiser, Timo  |p 18 
998 |g 132350386  |a Golatta, Michael  |m 132350386:Golatta, Michael  |d 910000  |d 910400  |d 50000  |e 910000PG132350386  |e 910400PG132350386  |e 50000PG132350386  |k 0/910000/  |k 1/910000/910400/  |k 0/50000/  |p 15 
998 |g 132580187  |a Heil, Jörg  |m 132580187:Heil, Jörg  |d 910000  |d 910400  |d 50000  |e 910000PH132580187  |e 910400PH132580187  |e 50000PH132580187  |k 0/910000/  |k 1/910000/910400/  |k 0/50000/  |p 14 
998 |g 132561972  |a Marmé, Frederik  |m 132561972:Marmé, Frederik  |d 50000  |d 60000  |d 61300  |e 50000PM132561972  |e 60000PM132561972  |e 61300PM132561972  |k 0/50000/  |k 0/60000/  |k 1/60000/61300/  |p 1  |x j 
999 |a KXP-PPN188592609X  |e 4512470980 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"title":[{"title":"Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images","title_sort":"Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images"}],"person":[{"display":"Marmé, Frederik","given":"Frederik","family":"Marmé","role":"aut"},{"role":"aut","family":"Krieghoff-Henning","given":"Eva","display":"Krieghoff-Henning, Eva"},{"family":"Gerber","display":"Gerber, Bernd","given":"Bernd","role":"aut"},{"family":"Schmitt","given":"Max","display":"Schmitt, Max","role":"aut"},{"role":"aut","given":"Dirk-Michael","display":"Zahm, Dirk-Michael","family":"Zahm"},{"role":"aut","display":"Bauerschlag, Dirk Olaf","given":"Dirk Olaf","family":"Bauerschlag"},{"family":"Forstbauer","display":"Forstbauer, Helmut","given":"Helmut","role":"aut"},{"family":"Hildebrandt","display":"Hildebrandt, Guido","given":"Guido","role":"aut"},{"given":"Beyhan","display":"Ataseven, Beyhan","family":"Ataseven","role":"aut"},{"family":"Brodkorb","display":"Brodkorb, Tobias","given":"Tobias","role":"aut"},{"family":"Denkert","display":"Denkert, Carsten","given":"Carsten","role":"aut"},{"given":"Angrit","display":"Stachs, Angrit","family":"Stachs","role":"aut"},{"role":"aut","given":"David","display":"Krug, David","family":"Krug"},{"role":"aut","display":"Heil, Jörg","given":"Jörg","family":"Heil"},{"family":"Golatta","given":"Michael","display":"Golatta, Michael","role":"aut"},{"role":"aut","given":"Thorsten","display":"Kühn, Thorsten","family":"Kühn"},{"role":"aut","family":"Nekljudova","display":"Nekljudova, Valentina","given":"Valentina"},{"role":"aut","given":"Timo","display":"Gaiser, Timo","family":"Gaiser"},{"display":"Schönmehl, Rebecca","given":"Rebecca","family":"Schönmehl","role":"aut"},{"family":"Brochhausen","display":"Brochhausen, Christoph","given":"Christoph","role":"aut"},{"given":"Sibylle","display":"Loibl, Sibylle","family":"Loibl","role":"aut"},{"display":"Reimer, Toralf","given":"Toralf","family":"Reimer","role":"aut"},{"display":"Brinker, Titus Josef","given":"Titus Josef","family":"Brinker","role":"aut"}],"recId":"188592609X","name":{"displayForm":["Frederik Marmé, Eva Krieghoff-Henning, Bernd Gerber, Max Schmitt, Dirk-Michael Zahm, Dirk Bauerschlag, Helmut Forstbauer, Guido Hildebrandt, Beyhan Ataseven, Tobias Brodkorb, Carsten Denkert, Angrit Stachs, David Krug, Jörg Heil, Michael Golatta, Thorsten Kühn, Valentina Nekljudova, Timo Gaiser, Rebecca Schönmehl, Christoph Brochhausen, Sibylle Loibl, Toralf Reimer, Titus J. Brinker"]},"origin":[{"dateIssuedDisp":"December 2023","dateIssuedKey":"2023"}],"relHost":[{"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"id":{"eki":["266883400"],"issn":["1879-0852"],"zdb":["1468190-0"]},"part":{"text":"195(2023), Artikel-ID 113390, Seite 1-6","volume":"195","year":"2023","extent":"6","pages":"1-6"},"title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"origin":[{"publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1992","dateIssuedDisp":"1992-","publisher":"Elsevier ; Pergamon Press"}],"corporate":[{"display":"European Organization for Research on Treatment of Cancer","role":"isb"},{"role":"isb","display":"European Association for Cancer Research"},{"display":"European School of Oncology","role":"isb"}],"pubHistory":["28.1992 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"EJC online"}],"language":["eng"],"recId":"266883400","disp":"Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological imagesEuropean journal of cancer"}],"note":["Available online 18 October 2023, Version of Record 25 October 2023","Gesehen am 16.04.2024"],"physDesc":[{"extent":"6 S.","noteIll":"Diagramme"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["188592609X"],"doi":["10.1016/j.ejca.2023.113390"]}} 
SRT |a MARMEFREDEDEEPLEARNI2023