Estimation of the biomechanical mammographic deformation of the breast using machine learning models 1

Background - A typical problem in the registration of MRI and X-ray mammography is the nonlinear deformation applied to the breast during mammography. We have developed a method for virtual deformation of the breast using a biomechanical model automatically constructed from MRI. The virtual deformat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Said, Sarah (VerfasserIn) , Yang, Zeyu (VerfasserIn) , Clauser, P. (VerfasserIn) , Ruiter, N. V. (VerfasserIn) , Baltzer, P. A. T. (VerfasserIn) , Hopp, T. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 2023
In: Clinical biomechanics
Year: 2023, Jahrgang: 110, Pages: 1-16
ISSN:1879-1271
DOI:10.1016/j.clinbiomech.2023.106117
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.clinbiomech.2023.106117
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0268003323002486
Volltext
Verfasserangaben:S. Said, Z. Yang, P. Clauser, N.V. Ruiter, P.A.T. Baltzer, T. Hopp

MARC

LEADER 00000caa a2200000 c 4500
001 1885962576
003 DE-627
005 20240703165119.0
007 cr uuu---uuuuu
008 240416s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.clinbiomech.2023.106117  |2 doi 
035 |a (DE-627)1885962576 
035 |a (DE-599)KXP1885962576 
035 |a (OCoLC)1443669023 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Said, Sarah  |d 1993-  |e VerfasserIn  |0 (DE-588)1326343459  |0 (DE-627)1885964617  |4 aut 
245 1 0 |a Estimation of the biomechanical mammographic deformation of the breast using machine learning models 1  |c S. Said, Z. Yang, P. Clauser, N.V. Ruiter, P.A.T. Baltzer, T. Hopp 
264 1 |c December 2023 
300 |b Illustrationen 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 6. Oktober 2023, Artikelversion: 10. Oktober 2023 
500 |a Gesehen am 16.04.2024 
520 |a Background - A typical problem in the registration of MRI and X-ray mammography is the nonlinear deformation applied to the breast during mammography. We have developed a method for virtual deformation of the breast using a biomechanical model automatically constructed from MRI. The virtual deformation is applied in two steps: unloaded state estimation and compression simulation. The finite element method is used to solve the deformation process. However, the extensive computational cost prevents its usage in clinical routine. - Methods - We propose three machine learning models to overcome this problem: an extremely randomized tree (first model), extreme gradient boosting (second model), and deep learning-based bidirectional long short-term memory with an attention layer (third model) to predict the deformation of a biomechanical model. We evaluated our methods with 516 breasts with realistic compression ratios up to 76%. - Findings - We first applied one-fold validation, in which the second and third models performed better than the first model. We then applied ten-fold validation. For the unloaded state estimation, the median RMSE for the second and third models is 0.8 mm and 1.2 mm, respectively. For the compression, the median RMSE is 3.4 mm for both models. We evaluated correlations between model accuracy and characteristics of the clinical datasets such as compression ratio, breast volume, and tissue types. - Interpretation - Using the proposed models, we achieved accurate results comparable to the finite element model, with a speedup of factor 240 using the extreme gradient boosting model. These proposed models can replace the finite element model simulation, enabling clinically relevant real-time application. 
650 4 |a Biomechanical simulation 
650 4 |a Breast imaging 
650 4 |a Clinical datasets 
650 4 |a Finite element methods 
650 4 |a Machine learning 
650 4 |a Mammographic compression 
700 1 |a Yang, Zeyu  |d 1996-  |e VerfasserIn  |0 (DE-588)132634384X  |0 (DE-627)1885965419  |4 aut 
700 1 |a Clauser, P.  |e VerfasserIn  |4 aut 
700 1 |a Ruiter, N. V.  |e VerfasserIn  |4 aut 
700 1 |a Baltzer, P. A. T.  |e VerfasserIn  |4 aut 
700 1 |a Hopp, T.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Clinical biomechanics  |d Amsterdam [u.a.] : Elsevier Science, 1986  |g 110(2023), Seite 1-16  |h Online-Ressource  |w (DE-627)32043740X  |w (DE-600)2004518-9  |w (DE-576)261823612  |x 1879-1271  |7 nnas  |a Estimation of the biomechanical mammographic deformation of the breast using machine learning models 1 
773 1 8 |g volume:110  |g year:2023  |g pages:1-16  |g extent:16  |a Estimation of the biomechanical mammographic deformation of the breast using machine learning models 1 
856 4 0 |u https://doi.org/10.1016/j.clinbiomech.2023.106117  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0268003323002486  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240416 
993 |a Article 
994 |a 2023 
998 |g 132634384X  |a Yang, Zeyu  |m 132634384X:Yang, Zeyu  |d 60000  |d 65200  |e 60000PY132634384X  |e 65200PY132634384X  |k 0/60000/  |k 1/60000/65200/  |p 2 
999 |a KXP-PPN1885962576  |e 4512599614 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"person":[{"display":"Said, Sarah","family":"Said","given":"Sarah","role":"aut"},{"role":"aut","given":"Zeyu","display":"Yang, Zeyu","family":"Yang"},{"role":"aut","given":"P.","family":"Clauser","display":"Clauser, P."},{"display":"Ruiter, N. V.","family":"Ruiter","given":"N. V.","role":"aut"},{"role":"aut","given":"P. A. T.","family":"Baltzer","display":"Baltzer, P. A. T."},{"display":"Hopp, T.","family":"Hopp","given":"T.","role":"aut"}],"id":{"eki":["1885962576"],"doi":["10.1016/j.clinbiomech.2023.106117"]},"physDesc":[{"noteIll":"Illustrationen","extent":"16 S."}],"name":{"displayForm":["S. Said, Z. Yang, P. Clauser, N.V. Ruiter, P.A.T. Baltzer, T. Hopp"]},"recId":"1885962576","relHost":[{"id":{"eki":["32043740X"],"issn":["1879-1271"],"zdb":["2004518-9"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"32043740X","disp":"Estimation of the biomechanical mammographic deformation of the breast using machine learning models 1Clinical biomechanics","type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.1986 -"],"note":["Gesehen am 04.02.20"],"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science","dateIssuedKey":"1986","dateIssuedDisp":"1986-"}],"title":[{"title_sort":"Clinical biomechanics","subtitle":"a journal affiliated to the International Society of Biomechanics and the American Society of Biomechanics","title":"Clinical biomechanics"}],"part":{"volume":"110","text":"110(2023), Seite 1-16","extent":"16","pages":"1-16","year":"2023"},"language":["eng"]}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Estimation of the biomechanical mammographic deformation of the breast using machine learning models 1","title":"Estimation of the biomechanical mammographic deformation of the breast using machine learning models 1"}],"note":["Online verfügbar: 6. Oktober 2023, Artikelversion: 10. Oktober 2023","Gesehen am 16.04.2024"],"origin":[{"dateIssuedDisp":"December 2023","dateIssuedKey":"2023"}]} 
SRT |a SAIDSARAHYESTIMATION2023