3D point cloud-based assessment of detailed building damage through a combination of machine learning, crowdsourcing and earthquake engineering
Gespeichert in:
| Hauptverfasser: | , , , , , , , |
|---|---|
| Dokumenttyp: | Kapitel/Artikel Konferenzschrift |
| Sprache: | Englisch |
| Veröffentlicht: |
2021
|
| In: |
Abstracts & presentations
Year: 2021, Pages: 1-2 |
| DOI: | 10.5194/egusphere-egu21-1304 |
| Online-Zugang: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.5194/egusphere-egu21-1304 Verlag, kostenfrei, Volltext: https://meetingorganizer.copernicus.org/EGU21/EGU21-1304.html |
| Verfasserangaben: | Vivien Zahs, Benjamin Herfort, Julia Kohns, Tahira Ullah, Katharina Anders, Lothar Stempniewski, Alexander Zipf, and Bernhard Höfle |
Search Result 1
Innovative methods for earthquake damage detection and classification using airborne observation of critical infrastructures (project LOKI)
Kapitel/Artikel
Konferenzschrift
Online Resource
Search Result 2
Presenting the GeForse approach to create synthetic LiDAR data from simulated forest stands to optimize forest inventories
Kapitel/Artikel
Konferenzschrift
Online Resource
Search Result 3
Virtual laser scanning (VLS) in forestry: investigating appropriate 3D forest representations for LiDAR simulations with HELIOS++
Kapitel/Artikel
Konferenzschrift
Online Resource