Statistical inference for wavelet curve estimators of symmetric positive definite matrices

In this paper we treat statistical inference for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rademacher, Daniel C. (VerfasserIn) , Krebs, Johannes (VerfasserIn) , Sachs, Rainer von (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: July 2024
In: Journal of statistical planning and inference
Year: 2024, Jahrgang: 231, Pages: 1-33
ISSN:0378-3758
DOI:10.1016/j.jspi.2023.106140
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jspi.2023.106140
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S037837582300109X
Volltext
Verfasserangaben:Daniel Rademacher, Johannes Krebs, Rainer von Sachs

MARC

LEADER 00000caa a2200000 c 4500
001 1886516804
003 DE-627
005 20240703170444.0
007 cr uuu---uuuuu
008 240422s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jspi.2023.106140  |2 doi 
035 |a (DE-627)1886516804 
035 |a (DE-599)KXP1886516804 
035 |a (OCoLC)1443669294 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rademacher, Daniel C.  |d 1990-  |e VerfasserIn  |0 (DE-588)119374802X  |0 (DE-627)1672824931  |4 aut 
245 1 0 |a Statistical inference for wavelet curve estimators of symmetric positive definite matrices  |c Daniel Rademacher, Johannes Krebs, Rainer von Sachs 
264 1 |c July 2024 
300 |a 33 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Available online 9 January 2024 
500 |a Gesehen am 22.04.2024 
520 |a In this paper we treat statistical inference for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second-generation wavelet estimator is based on average-interpolation (AI) and allows the same powerful properties, including fast algorithms, known from nonparametric curve estimation with wavelets in standard Euclidean set-ups. The core of our work is the proposition of confidence sets for our AI wavelet estimator in a non-Euclidean geometry. We derive asymptotic normality of this estimator, including explicit expressions of its asymptotic variance. This opens the door for constructing asymptotic confidence regions which we compare with our proposed bootstrap scheme for inference. Detailed numerical simulations confirm the appropriateness of our suggested inference schemes. 
650 4 |a AI refinement 
650 4 |a Asymptotic normality 
650 4 |a Covariance matrices 
650 4 |a log-Euclidean manifold 
650 4 |a Matrix-valued curves 
650 4 |a Second generation wavelets 
700 1 |a Krebs, Johannes  |e VerfasserIn  |0 (DE-588)1137179813  |0 (DE-627)894147072  |0 (DE-576)491128266  |4 aut 
700 1 |a Sachs, Rainer von  |e VerfasserIn  |0 (DE-588)130138711  |0 (DE-627)49126092X  |0 (DE-576)298020114  |4 aut 
773 0 8 |i Enthalten in  |t Journal of statistical planning and inference  |d Amsterdam : North-Holland Publ. Co., 1977  |g 231(2024), Artikel-ID 106140, Seite 1-33  |h Online-Ressource  |w (DE-627)266882307  |w (DE-600)1468074-9  |w (DE-576)09405830X  |x 0378-3758  |7 nnas  |a Statistical inference for wavelet curve estimators of symmetric positive definite matrices 
773 1 8 |g volume:231  |g year:2024  |g elocationid:106140  |g pages:1-33  |g extent:33  |a Statistical inference for wavelet curve estimators of symmetric positive definite matrices 
856 4 0 |u https://doi.org/10.1016/j.jspi.2023.106140  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S037837582300109X  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240429 
993 |a Article 
994 |a 2024 
998 |g 119374802X  |a Rademacher, Daniel C.  |m 119374802X:Rademacher, Daniel C.  |p 1  |x j 
999 |a KXP-PPN1886516804  |e 4518923138 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Statistical inference for wavelet curve estimators of symmetric positive definite matrices","title":"Statistical inference for wavelet curve estimators of symmetric positive definite matrices"}],"person":[{"given":"Daniel C.","family":"Rademacher","role":"aut","display":"Rademacher, Daniel C.","roleDisplay":"VerfasserIn"},{"display":"Krebs, Johannes","roleDisplay":"VerfasserIn","role":"aut","family":"Krebs","given":"Johannes"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sachs, Rainer von","given":"Rainer von","family":"Sachs"}],"language":["eng"],"recId":"1886516804","note":["Available online 9 January 2024","Gesehen am 22.04.2024"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1886516804"],"doi":["10.1016/j.jspi.2023.106140"]},"origin":[{"dateIssuedDisp":"July 2024","dateIssuedKey":"2024"}],"name":{"displayForm":["Daniel Rademacher, Johannes Krebs, Rainer von Sachs"]},"relHost":[{"language":["eng"],"recId":"266882307","disp":"Statistical inference for wavelet curve estimators of symmetric positive definite matricesJournal of statistical planning and inference","note":["Gesehen am 01.06.2021"],"type":{"media":"Online-Ressource","bibl":"periodical"},"titleAlt":[{"title":"JSPI"}],"part":{"pages":"1-33","year":"2024","extent":"33","text":"231(2024), Artikel-ID 106140, Seite 1-33","volume":"231"},"pubHistory":["1.1977 - 143.2013; Vol. 144.2014 -"],"title":[{"subtitle":"JSPI","title":"Journal of statistical planning and inference","title_sort":"Journal of statistical planning and inference"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["0378-3758"],"eki":["266882307"],"zdb":["1468074-9"]},"origin":[{"publisherPlace":"Amsterdam","dateIssuedDisp":"1977-","dateIssuedKey":"1977","publisher":"North-Holland Publ. Co."}]}],"physDesc":[{"extent":"33 S."}]} 
SRT |a RADEMACHERSTATISTICA2024