Statistical inference for wavelet curve estimators of symmetric positive definite matrices
In this paper we treat statistical inference for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
July 2024
|
| In: |
Journal of statistical planning and inference
Year: 2024, Jahrgang: 231, Pages: 1-33 |
| ISSN: | 0378-3758 |
| DOI: | 10.1016/j.jspi.2023.106140 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jspi.2023.106140 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S037837582300109X |
| Verfasserangaben: | Daniel Rademacher, Johannes Krebs, Rainer von Sachs |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1886516804 | ||
| 003 | DE-627 | ||
| 005 | 20240703170444.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240422s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jspi.2023.106140 |2 doi | |
| 035 | |a (DE-627)1886516804 | ||
| 035 | |a (DE-599)KXP1886516804 | ||
| 035 | |a (OCoLC)1443669294 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Rademacher, Daniel C. |d 1990- |e VerfasserIn |0 (DE-588)119374802X |0 (DE-627)1672824931 |4 aut | |
| 245 | 1 | 0 | |a Statistical inference for wavelet curve estimators of symmetric positive definite matrices |c Daniel Rademacher, Johannes Krebs, Rainer von Sachs |
| 264 | 1 | |c July 2024 | |
| 300 | |a 33 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Available online 9 January 2024 | ||
| 500 | |a Gesehen am 22.04.2024 | ||
| 520 | |a In this paper we treat statistical inference for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second-generation wavelet estimator is based on average-interpolation (AI) and allows the same powerful properties, including fast algorithms, known from nonparametric curve estimation with wavelets in standard Euclidean set-ups. The core of our work is the proposition of confidence sets for our AI wavelet estimator in a non-Euclidean geometry. We derive asymptotic normality of this estimator, including explicit expressions of its asymptotic variance. This opens the door for constructing asymptotic confidence regions which we compare with our proposed bootstrap scheme for inference. Detailed numerical simulations confirm the appropriateness of our suggested inference schemes. | ||
| 650 | 4 | |a AI refinement | |
| 650 | 4 | |a Asymptotic normality | |
| 650 | 4 | |a Covariance matrices | |
| 650 | 4 | |a log-Euclidean manifold | |
| 650 | 4 | |a Matrix-valued curves | |
| 650 | 4 | |a Second generation wavelets | |
| 700 | 1 | |a Krebs, Johannes |e VerfasserIn |0 (DE-588)1137179813 |0 (DE-627)894147072 |0 (DE-576)491128266 |4 aut | |
| 700 | 1 | |a Sachs, Rainer von |e VerfasserIn |0 (DE-588)130138711 |0 (DE-627)49126092X |0 (DE-576)298020114 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of statistical planning and inference |d Amsterdam : North-Holland Publ. Co., 1977 |g 231(2024), Artikel-ID 106140, Seite 1-33 |h Online-Ressource |w (DE-627)266882307 |w (DE-600)1468074-9 |w (DE-576)09405830X |x 0378-3758 |7 nnas |a Statistical inference for wavelet curve estimators of symmetric positive definite matrices |
| 773 | 1 | 8 | |g volume:231 |g year:2024 |g elocationid:106140 |g pages:1-33 |g extent:33 |a Statistical inference for wavelet curve estimators of symmetric positive definite matrices |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jspi.2023.106140 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S037837582300109X |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240429 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 119374802X |a Rademacher, Daniel C. |m 119374802X:Rademacher, Daniel C. |p 1 |x j | ||
| 999 | |a KXP-PPN1886516804 |e 4518923138 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"Statistical inference for wavelet curve estimators of symmetric positive definite matrices","title":"Statistical inference for wavelet curve estimators of symmetric positive definite matrices"}],"person":[{"given":"Daniel C.","family":"Rademacher","role":"aut","display":"Rademacher, Daniel C.","roleDisplay":"VerfasserIn"},{"display":"Krebs, Johannes","roleDisplay":"VerfasserIn","role":"aut","family":"Krebs","given":"Johannes"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sachs, Rainer von","given":"Rainer von","family":"Sachs"}],"language":["eng"],"recId":"1886516804","note":["Available online 9 January 2024","Gesehen am 22.04.2024"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1886516804"],"doi":["10.1016/j.jspi.2023.106140"]},"origin":[{"dateIssuedDisp":"July 2024","dateIssuedKey":"2024"}],"name":{"displayForm":["Daniel Rademacher, Johannes Krebs, Rainer von Sachs"]},"relHost":[{"language":["eng"],"recId":"266882307","disp":"Statistical inference for wavelet curve estimators of symmetric positive definite matricesJournal of statistical planning and inference","note":["Gesehen am 01.06.2021"],"type":{"media":"Online-Ressource","bibl":"periodical"},"titleAlt":[{"title":"JSPI"}],"part":{"pages":"1-33","year":"2024","extent":"33","text":"231(2024), Artikel-ID 106140, Seite 1-33","volume":"231"},"pubHistory":["1.1977 - 143.2013; Vol. 144.2014 -"],"title":[{"subtitle":"JSPI","title":"Journal of statistical planning and inference","title_sort":"Journal of statistical planning and inference"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["0378-3758"],"eki":["266882307"],"zdb":["1468074-9"]},"origin":[{"publisherPlace":"Amsterdam","dateIssuedDisp":"1977-","dateIssuedKey":"1977","publisher":"North-Holland Publ. Co."}]}],"physDesc":[{"extent":"33 S."}]} | ||
| SRT | |a RADEMACHERSTATISTICA2024 | ||