Statistical inference for wavelet curve estimators of symmetric positive definite matrices

In this paper we treat statistical inference for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rademacher, Daniel C. (VerfasserIn) , Krebs, Johannes (VerfasserIn) , Sachs, Rainer von (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: July 2024
In: Journal of statistical planning and inference
Year: 2024, Jahrgang: 231, Pages: 1-33
ISSN:0378-3758
DOI:10.1016/j.jspi.2023.106140
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jspi.2023.106140
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S037837582300109X
Volltext
Verfasserangaben:Daniel Rademacher, Johannes Krebs, Rainer von Sachs
Beschreibung
Zusammenfassung:In this paper we treat statistical inference for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second-generation wavelet estimator is based on average-interpolation (AI) and allows the same powerful properties, including fast algorithms, known from nonparametric curve estimation with wavelets in standard Euclidean set-ups. The core of our work is the proposition of confidence sets for our AI wavelet estimator in a non-Euclidean geometry. We derive asymptotic normality of this estimator, including explicit expressions of its asymptotic variance. This opens the door for constructing asymptotic confidence regions which we compare with our proposed bootstrap scheme for inference. Detailed numerical simulations confirm the appropriateness of our suggested inference schemes.
Beschreibung:Available online 9 January 2024
Gesehen am 22.04.2024
Beschreibung:Online Resource
ISSN:0378-3758
DOI:10.1016/j.jspi.2023.106140