Simulation-to-real generalization for deep-learning-based refraction-corrected ultrasound tomography image reconstruction

Objective. The image reconstruction of ultrasound computed tomography is computationally expensive with conventional iterative methods. The fully learned direct deep learning reconstruction is promising to speed up image reconstruction significantly. However, for direct reconstruction from measureme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhao, Wenzhao (VerfasserIn) , Fan, Yuling (VerfasserIn) , Wang, Hongjian (VerfasserIn) , Gemmeke, Hartmut (VerfasserIn) , Dongen, Koen W. A. van (VerfasserIn) , Hopp, Torsten (VerfasserIn) , Hesser, Jürgen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 January 2023
In: Physics in medicine and biology
Year: 2023, Jahrgang: 68, Heft: 3, Pages: 1-16
ISSN:1361-6560
DOI:10.1088/1361-6560/acaeed
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/1361-6560/acaeed
Verlag, lizenzpflichtig, Volltext: https://dx.doi.org/10.1088/1361-6560/acaeed
Volltext
Verfasserangaben:Wenzhao Zhao, Yuling Fan, Hongjian Wang, Hartmut Gemmeke, Koen W.A. van Dongen, Torsten Hopp and Jürgen Hesser

MARC

LEADER 00000caa a2200000 c 4500
001 1887974482
003 DE-627
005 20240703173637.0
007 cr uuu---uuuuu
008 240507s2023 xx |||||o 00| ||eng c
024 7 |a 10.1088/1361-6560/acaeed  |2 doi 
035 |a (DE-627)1887974482 
035 |a (DE-599)KXP1887974482 
035 |a (OCoLC)1443675564 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Zhao, Wenzhao  |d 1990-  |e VerfasserIn  |0 (DE-588)1304109860  |0 (DE-627)186034769X  |4 aut 
245 1 0 |a Simulation-to-real generalization for deep-learning-based refraction-corrected ultrasound tomography image reconstruction  |c Wenzhao Zhao, Yuling Fan, Hongjian Wang, Hartmut Gemmeke, Koen W.A. van Dongen, Torsten Hopp and Jürgen Hesser 
264 1 |c 27 January 2023 
300 |b Illustrationen 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.05.2024 
520 |a Objective. The image reconstruction of ultrasound computed tomography is computationally expensive with conventional iterative methods. The fully learned direct deep learning reconstruction is promising to speed up image reconstruction significantly. However, for direct reconstruction from measurement data, due to the lack of real labeled data, the neural network is usually trained on a simulation dataset and shows poor performance on real data because of the simulation-to-real gap. Approach. To improve the simulation-to-real generalization of neural networks, a series of strategies are developed including a Fourier-transform-integrated neural network, measurement-domain data augmentation methods, and a self-supervised-learning-based patch-wise preprocessing neural network. Our strategies are evaluated on both the simulation dataset and real measurement datasets from two different prototype machines. Main results. The experimental results show that our deep learning methods help to improve the neural networks’ robustness against noise and the generalizability to real measurement data. Significance. Our methods prove that it is possible for neural networks to achieve superior performance to traditional iterative reconstruction algorithms in imaging quality and allow for real-time 2D-image reconstruction. This study helps pave the path for the application of deep learning methods to practical ultrasound tomography image reconstruction based on simulation datasets. 
700 1 |a Fan, Yuling  |d 1993-  |e VerfasserIn  |0 (DE-588)132853720X  |0 (DE-627)1887975748  |4 aut 
700 1 |a Wang, Hongjian  |e VerfasserIn  |4 aut 
700 1 |a Gemmeke, Hartmut  |e VerfasserIn  |4 aut 
700 1 |a Dongen, Koen W. A. van  |e VerfasserIn  |4 aut 
700 1 |a Hopp, Torsten  |e VerfasserIn  |4 aut 
700 1 |a Hesser, Jürgen  |d 1964-  |e VerfasserIn  |0 (DE-588)1020647353  |0 (DE-627)691291071  |0 (DE-576)361513739  |4 aut 
773 0 8 |i Enthalten in  |t Physics in medicine and biology  |d Bristol : IOP Publ., 1956  |g 68(2023), 3, Seite 1-16  |h Online-Ressource  |w (DE-627)269016163  |w (DE-600)1473501-5  |w (DE-576)088704130  |x 1361-6560  |7 nnas  |a Simulation-to-real generalization for deep-learning-based refraction-corrected ultrasound tomography image reconstruction 
773 1 8 |g volume:68  |g year:2023  |g number:3  |g pages:1-16  |g extent:16  |a Simulation-to-real generalization for deep-learning-based refraction-corrected ultrasound tomography image reconstruction 
856 4 0 |u https://doi.org/10.1088/1361-6560/acaeed  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://dx.doi.org/10.1088/1361-6560/acaeed  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240507 
993 |a Article 
994 |a 2023 
998 |g 1020647353  |a Hesser, Jürgen  |m 1020647353:Hesser, Jürgen  |d 60000  |d 65200  |e 60000PH1020647353  |e 65200PH1020647353  |k 0/60000/  |k 1/60000/65200/  |p 7  |y j 
998 |g 132853720X  |a Fan, Yuling  |m 132853720X:Fan, Yuling  |d 60000  |d 63000  |e 60000PF132853720X  |e 63000PF132853720X  |k 0/60000/  |k 1/60000/63000/  |p 2 
998 |g 1304109860  |a Zhao, Wenzhao  |m 1304109860:Zhao, Wenzhao  |d 60000  |d 63000  |e 60000PZ1304109860  |e 63000PZ1304109860  |k 0/60000/  |k 1/60000/63000/  |p 1  |x j 
999 |a KXP-PPN1887974482  |e 4521118828 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Simulation-to-real generalization for deep-learning-based refraction-corrected ultrasound tomography image reconstruction","title":"Simulation-to-real generalization for deep-learning-based refraction-corrected ultrasound tomography image reconstruction"}],"note":["Gesehen am 07.05.2024"],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"27 January 2023"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"person":[{"role":"aut","given":"Wenzhao","display":"Zhao, Wenzhao","family":"Zhao"},{"given":"Yuling","role":"aut","display":"Fan, Yuling","family":"Fan"},{"family":"Wang","display":"Wang, Hongjian","given":"Hongjian","role":"aut"},{"given":"Hartmut","role":"aut","display":"Gemmeke, Hartmut","family":"Gemmeke"},{"family":"Dongen","display":"Dongen, Koen W. A. van","given":"Koen W. A. van","role":"aut"},{"role":"aut","given":"Torsten","display":"Hopp, Torsten","family":"Hopp"},{"family":"Hesser","display":"Hesser, Jürgen","role":"aut","given":"Jürgen"}],"relHost":[{"part":{"issue":"3","year":"2023","text":"68(2023), 3, Seite 1-16","pages":"1-16","extent":"16","volume":"68"},"note":["Gesehen am 28.01.2019","Fortsetzung der Druck-Ausgabe"],"origin":[{"dateIssuedDisp":"1956-","publisherPlace":"Bristol","publisher":"IOP Publ.","dateIssuedKey":"1956"}],"title":[{"title_sort":"Physics in medicine and biology","subtitle":"an official journal of the Institute of Physics and Engineering in Medicine","title":"Physics in medicine and biology"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"disp":"Simulation-to-real generalization for deep-learning-based refraction-corrected ultrasound tomography image reconstructionPhysics in medicine and biology","id":{"issn":["1361-6560"],"eki":["269016163"],"zdb":["1473501-5"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"269016163","pubHistory":["1.1956 -"]}],"id":{"eki":["1887974482"],"doi":["10.1088/1361-6560/acaeed"]},"name":{"displayForm":["Wenzhao Zhao, Yuling Fan, Hongjian Wang, Hartmut Gemmeke, Koen W.A. van Dongen, Torsten Hopp and Jürgen Hesser"]},"physDesc":[{"noteIll":"Illustrationen","extent":"16 S."}],"recId":"1887974482"} 
SRT |a ZHAOWENZHASIMULATION2720