Stable patients with suspected myocardial ischemia: comparison of machine-learning computed tomography-based fractional flow reserve and stress perfusion cardiovascular magnetic resonance imaging to detect myocardial ischemia

Machine-Learning Computed Tomography-Based Fractional Flow Reserve (CT-FFRML) is a novel tool for the assessment of hemodynamic relevance of coronary artery stenoses. We examined the diagnostic performance of CT-FFRML compared to stress perfusion cardiovascular magnetic resonance (CMR) and tested if...

Full description

Saved in:
Bibliographic Details
Main Authors: Loßnitzer, Dirk (Author) , Klenantz, Selina (Author) , André, Florian (Author) , Görich, Johannes (Author) , Schoepf, U. Joseph (Author) , Pazzo, Kyle L. (Author) , Sommer, André (Author) , Brado, Matthias (Author) , Gückel, Friedemann (Author) , Sokiranski, Roman (Author) , Becher, Tobias (Author) , Akın, Ibrahim (Author) , Buß, Sebastian Johannes (Author) , Baumann, Stefan (Author)
Format: Article (Journal)
Language:English
Published: 05 February 2022
In: BMC cardiovascular disorders
Year: 2022, Volume: 22, Pages: 1-10
ISSN:1471-2261
DOI:10.1186/s12872-022-02467-2
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s12872-022-02467-2
Verlag, kostenfrei, Volltext: http://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-022-02467-2
Get full text
Author Notes:Dirk Lossnitzer, Selina Klenantz, Florian Andre, Johannes Goerich, U. Joseph Schoepf, Kyle L. Pazzo, Andre Sommer, Matthias Brado, Friedemann Gückel, Roman Sokiranski, Tobias Becher, Ibrahim Akin, Sebastian J. Buss and Stefan Baumann

MARC

LEADER 00000caa a2200000 c 4500
001 1887984798
003 DE-627
005 20240703173733.0
007 cr uuu---uuuuu
008 240507s2022 xx |||||o 00| ||eng c
024 7 |a 10.1186/s12872-022-02467-2  |2 doi 
035 |a (DE-627)1887984798 
035 |a (DE-599)KXP1887984798 
035 |a (OCoLC)1443675591 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Loßnitzer, Dirk  |d 1972-  |e VerfasserIn  |0 (DE-588)124754031  |0 (DE-627)365721506  |0 (DE-576)29448325X  |4 aut 
245 1 0 |a Stable patients with suspected myocardial ischemia: comparison of machine-learning computed tomography-based fractional flow reserve and stress perfusion cardiovascular magnetic resonance imaging to detect myocardial ischemia  |c Dirk Lossnitzer, Selina Klenantz, Florian Andre, Johannes Goerich, U. Joseph Schoepf, Kyle L. Pazzo, Andre Sommer, Matthias Brado, Friedemann Gückel, Roman Sokiranski, Tobias Becher, Ibrahim Akin, Sebastian J. Buss and Stefan Baumann 
264 1 |c 05 February 2022 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.05.2024 
520 |a Machine-Learning Computed Tomography-Based Fractional Flow Reserve (CT-FFRML) is a novel tool for the assessment of hemodynamic relevance of coronary artery stenoses. We examined the diagnostic performance of CT-FFRML compared to stress perfusion cardiovascular magnetic resonance (CMR) and tested if there is an additional value of CT-FFRML over coronary computed tomography angiography (cCTA). Our retrospective analysis included 269 vessels in 141 patients (mean age 67 ± 9 years, 78% males) who underwent clinically indicated cCTA and subsequent stress perfusion CMR within a period of 2 months. CT-FFRML values were calculated from standard cCTA. CT-FFRML revealed no hemodynamic significance in 79% of the patients having ≥ 50% stenosis in cCTA. Chi2 values for the statistical relationship between CT-FFRML and stress perfusion CMR was significant (p < 0.0001). CT-FFRML and cCTA (≥ 70% stenosis) provided a per patient sensitivity of 88% (95%CI 64-99%) and 59% (95%CI 33-82%); specificity of 90% (95%CI 84-95%) and 85% (95%CI 78-91%); positive predictive value of 56% (95%CI 42-69%) and 36% (95%CI 24-50%); negative predictive value of 98% (95%CI 94-100%) and 94% (95%CI 90-96%); accuracy of 90% (95%CI 84-94%) and 82% (95%CI 75-88%) when compared to stress perfusion CMR. The accuracy of cCTA (≥ 50% stenosis) was 19% (95%CI 13-27%). The AUCs were 0.89 for CT-FFRML and 0.74 for cCTA (≥ 70% stenosis) and therefore significantly different (p < 0.05). CT-FFRML compared to stress perfusion CMR as the reference standard shows high diagnostic power in the identification of patients with hemodynamically significant coronary artery stenosis. This could support the role of cCTA as gatekeeper for further downstream testing and may reduce the number of patients undergoing unnecessary invasive workup. 
700 1 |a Klenantz, Selina  |d 1998-  |e VerfasserIn  |0 (DE-588)1297892747  |0 (DE-627)1854076221  |4 aut 
700 1 |a André, Florian  |d 1983-  |e VerfasserIn  |0 (DE-588)1051060230  |0 (DE-627)785671714  |0 (DE-576)405733267  |4 aut 
700 1 |a Görich, Johannes  |d 1958-  |e VerfasserIn  |0 (DE-588)132866760X  |0 (DE-627)1888095105  |4 aut 
700 1 |a Schoepf, U. Joseph  |e VerfasserIn  |4 aut 
700 1 |a Pazzo, Kyle L.  |e VerfasserIn  |4 aut 
700 1 |a Sommer, André  |e VerfasserIn  |0 (DE-588)1230495681  |0 (DE-627)175296439X  |4 aut 
700 1 |a Brado, Matthias  |e VerfasserIn  |4 aut 
700 1 |a Gückel, Friedemann  |d 1953-  |e VerfasserIn  |0 (DE-588)1014496314  |0 (DE-627)705247538  |0 (DE-576)348908377  |4 aut 
700 1 |a Sokiranski, Roman  |e VerfasserIn  |4 aut 
700 1 |a Becher, Tobias  |d 1983-  |e VerfasserIn  |0 (DE-588)1026789605  |0 (DE-627)727387510  |0 (DE-576)37211105X  |4 aut 
700 1 |a Akın, Ibrahim  |d 1978-  |e VerfasserIn  |0 (DE-588)132322293  |0 (DE-627)521039010  |0 (DE-576)299074366  |4 aut 
700 1 |a Buß, Sebastian Johannes  |d 1977-  |e VerfasserIn  |0 (DE-588)131490451  |0 (DE-627)509814050  |0 (DE-576)298541963  |4 aut 
700 1 |a Baumann, Stefan  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t BMC cardiovascular disorders  |d London : BioMed Central, 2001  |g 22(2022), Artikel-ID 34, Seite 1-10  |h Online-Ressource  |w (DE-627)335488870  |w (DE-600)2059859-2  |w (DE-576)107015048  |x 1471-2261  |7 nnas  |a Stable patients with suspected myocardial ischemia: comparison of machine-learning computed tomography-based fractional flow reserve and stress perfusion cardiovascular magnetic resonance imaging to detect myocardial ischemia 
773 1 8 |g volume:22  |g year:2022  |g elocationid:34  |g pages:1-10  |g extent:10  |a Stable patients with suspected myocardial ischemia: comparison of machine-learning computed tomography-based fractional flow reserve and stress perfusion cardiovascular magnetic resonance imaging to detect myocardial ischemia 
856 4 0 |u https://doi.org/10.1186/s12872-022-02467-2  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-022-02467-2  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240507 
993 |a Article 
994 |a 2022 
998 |g 131490451  |a Buß, Sebastian Johannes  |m 131490451:Buß, Sebastian Johannes  |d 50000  |e 50000PB131490451  |k 0/50000/  |p 13 
998 |g 132322293  |a Akın, Ibrahim  |m 132322293:Akın, Ibrahim  |d 60000  |d 61000  |e 60000PA132322293  |e 61000PA132322293  |k 0/60000/  |k 1/60000/61000/  |p 12 
998 |g 1026789605  |a Becher, Tobias  |m 1026789605:Becher, Tobias  |d 60000  |d 61000  |e 60000PB1026789605  |e 61000PB1026789605  |k 0/60000/  |k 1/60000/61000/  |p 11 
998 |g 1051060230  |a André, Florian  |m 1051060230:André, Florian  |d 910000  |d 910100  |e 910000PA1051060230  |e 910100PA1051060230  |k 0/910000/  |k 1/910000/910100/  |p 3 
998 |g 1297892747  |a Klenantz, Selina  |m 1297892747:Klenantz, Selina  |d 60000  |e 60000PK1297892747  |k 0/60000/  |p 2 
998 |g 124754031  |a Loßnitzer, Dirk  |m 124754031:Loßnitzer, Dirk  |d 910000  |d 910100  |d 60000  |e 910000PL124754031  |e 910100PL124754031  |e 60000PL124754031  |k 0/910000/  |k 1/910000/910100/  |k 0/60000/  |p 1  |x j 
999 |a KXP-PPN1887984798  |e 452120564X 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"noteIll":"Illustrationen","extent":"10 S."}],"recId":"1887984798","origin":[{"dateIssuedDisp":"05 February 2022","dateIssuedKey":"2022"}],"person":[{"display":"Loßnitzer, Dirk","family":"Loßnitzer","given":"Dirk","role":"aut"},{"family":"Klenantz","role":"aut","given":"Selina","display":"Klenantz, Selina"},{"display":"André, Florian","given":"Florian","role":"aut","family":"André"},{"given":"Johannes","role":"aut","family":"Görich","display":"Görich, Johannes"},{"display":"Schoepf, U. Joseph","given":"U. Joseph","role":"aut","family":"Schoepf"},{"display":"Pazzo, Kyle L.","family":"Pazzo","role":"aut","given":"Kyle L."},{"given":"André","role":"aut","family":"Sommer","display":"Sommer, André"},{"given":"Matthias","role":"aut","family":"Brado","display":"Brado, Matthias"},{"given":"Friedemann","role":"aut","family":"Gückel","display":"Gückel, Friedemann"},{"display":"Sokiranski, Roman","given":"Roman","role":"aut","family":"Sokiranski"},{"family":"Becher","given":"Tobias","role":"aut","display":"Becher, Tobias"},{"family":"Akın","role":"aut","given":"Ibrahim","display":"Akın, Ibrahim"},{"display":"Buß, Sebastian Johannes","role":"aut","given":"Sebastian Johannes","family":"Buß"},{"display":"Baumann, Stefan","family":"Baumann","role":"aut","given":"Stefan"}],"relHost":[{"origin":[{"publisher":"BioMed Central","dateIssuedKey":"2001","dateIssuedDisp":"2001-","publisherPlace":"London"}],"pubHistory":["1.2001 -"],"id":{"zdb":["2059859-2"],"eki":["335488870"],"issn":["1471-2261"]},"part":{"extent":"10","volume":"22","text":"22(2022), Artikel-ID 34, Seite 1-10","year":"2022","pages":"1-10"},"title":[{"title":"BMC cardiovascular disorders","title_sort":"BMC cardiovascular disorders"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"recId":"335488870","physDesc":[{"extent":"Online-Ressource"}],"disp":"Stable patients with suspected myocardial ischemia: comparison of machine-learning computed tomography-based fractional flow reserve and stress perfusion cardiovascular magnetic resonance imaging to detect myocardial ischemiaBMC cardiovascular disorders"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 07.05.2024"],"title":[{"title":"Stable patients with suspected myocardial ischemia: comparison of machine-learning computed tomography-based fractional flow reserve and stress perfusion cardiovascular magnetic resonance imaging to detect myocardial ischemia","title_sort":"Stable patients with suspected myocardial ischemia: comparison of machine-learning computed tomography-based fractional flow reserve and stress perfusion cardiovascular magnetic resonance imaging to detect myocardial ischemia"}],"name":{"displayForm":["Dirk Lossnitzer, Selina Klenantz, Florian Andre, Johannes Goerich, U. Joseph Schoepf, Kyle L. Pazzo, Andre Sommer, Matthias Brado, Friedemann Gückel, Roman Sokiranski, Tobias Becher, Ibrahim Akin, Sebastian J. Buss and Stefan Baumann"]},"id":{"eki":["1887984798"],"doi":["10.1186/s12872-022-02467-2"]}} 
SRT |a LOSSNITZERSTABLEPATI0520