Optimal control of Hughes’ model for pedestrian flow via local attraction

We discuss the control of a human crowd whose dynamics is governed by a regularized version of Hughes’ model, cf. Hughes (Transp Res Part B: Methodol 36(6):507-535, 2002. https://doi.org/10.1016/s0191-2615(01)00015-7). We assume that a finite number of agents act on the crowd and try to optimize the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Herzog, Roland (VerfasserIn) , Pietschmann, Jan-Frederik (VerfasserIn) , Winkler, Max (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 October 2023
In: Applied mathematics & optimization
Year: 2023, Jahrgang: 88, Heft: 3, Pages: 1-44
ISSN:1432-0606
DOI:10.1007/s00245-023-10064-8
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00245-023-10064-8
Volltext
Verfasserangaben:Roland Herzog, Jan-Frederik Pietschmann, Max Winkler
Beschreibung
Zusammenfassung:We discuss the control of a human crowd whose dynamics is governed by a regularized version of Hughes’ model, cf. Hughes (Transp Res Part B: Methodol 36(6):507-535, 2002. https://doi.org/10.1016/s0191-2615(01)00015-7). We assume that a finite number of agents act on the crowd and try to optimize their paths in a given time interval. The objective functional can be general and it can correspond, for instance, to the desire for fast evacuation or to maintain a single group of individuals. We provide an existence and regularity result for the coupled PDE-ODE forward model via an approximation argument, study differentiability properties of the control-to-state map, establish the existence of a globally optimal control and formulate optimality conditions.
Beschreibung:Gesehen am 08.05.2024
Beschreibung:Online Resource
ISSN:1432-0606
DOI:10.1007/s00245-023-10064-8