Euclid: identification of asteroid streaks in simulated images using deep learning

The material composition of asteroids is an essential piece of knowledge in the quest to understand the formation and evolution of the Solar System. Visual to near-infrared spectra or multiband photometry is required to constrain the material composition of asteroids, but we currently have such data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pöntinen, Mikko (VerfasserIn) , Amendola, Luca (VerfasserIn) , Jahnke, Knud (VerfasserIn) , Seidel, Gregor (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: November 2023
In: Astronomy and astrophysics
Year: 2023, Jahrgang: 679, Pages: 1-18
ISSN:1432-0746
DOI:10.1051/0004-6361/202347551
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1051/0004-6361/202347551
Verlag, kostenfrei, Volltext: https://www.aanda.org/articles/aa/abs/2023/11/aa47551-23/aa47551-23.html
Volltext
Verfasserangaben:M. Pöntinen, M. Granvik, A.A. Nucita, L. Conversi, B. Altieri, B. Carry, C.M. O’Riordan, D. Scott, N. Aghanim, A. Amara, L. Amendola, N. Auricchio, M. Baldi, D. Bonino, E. Branchini, M. Brescia, S. Camera, V. Capobianco, C. Carbone, J. Carretero, M. Castellano, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, Y. Copin, L. Corcione, F. Courbin, M. Cropper, A. Da Silva, H. Degaudenzi, J. Dinis, F. Dubath, X. Dupac, S. Dusini, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Garilli, W. Gillard, B. Gillis, C. Giocoli, A. Grazian, S.V.H. Haugan, W. Holmes, F. Hormuth, A. Hornstrup, K. Jahnke, M. Kümmel, S. Kermiche, A. Kiessling, T. Kitching, R. Kohley, M. Kunz, H. Kurki-Suonio, S. Ligori, P.B. Lilje, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, F. Marulli, R. Massey, E. Medinaceli, S. Mei, M. Melchior, Y. Mellier, M. Meneghetti, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S.-M. Niemi, T. Nutma, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, G. Polenta, M. Poncet, F. Raison, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, D. Sapone, B. Sartoris, P. Schneider, A. Secroun, G. Seidel, S. Serrano, C. Sirignano, G. Sirri, L. Stanco, P. Tallada-Crespí, A.N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, T. Vassallo, G. Verdoes Kleijn, Y. Wang, J. Weller, G. Zamorani, J. Zoubian, and V. Scottez

MARC

LEADER 00000caa a2200000 c 4500
001 1888708018
003 DE-627
005 20240703180032.0
007 cr uuu---uuuuu
008 240515s2023 xx |||||o 00| ||eng c
024 7 |a 10.1051/0004-6361/202347551  |2 doi 
035 |a (DE-627)1888708018 
035 |a (DE-599)KXP1888708018 
035 |a (OCoLC)1443678455 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Pöntinen, Mikko  |e VerfasserIn  |0 (DE-588)1329480171  |0 (DE-627)1888708298  |4 aut 
245 1 0 |a Euclid  |b identification of asteroid streaks in simulated images using deep learning  |c M. Pöntinen, M. Granvik, A.A. Nucita, L. Conversi, B. Altieri, B. Carry, C.M. O’Riordan, D. Scott, N. Aghanim, A. Amara, L. Amendola, N. Auricchio, M. Baldi, D. Bonino, E. Branchini, M. Brescia, S. Camera, V. Capobianco, C. Carbone, J. Carretero, M. Castellano, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, Y. Copin, L. Corcione, F. Courbin, M. Cropper, A. Da Silva, H. Degaudenzi, J. Dinis, F. Dubath, X. Dupac, S. Dusini, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Garilli, W. Gillard, B. Gillis, C. Giocoli, A. Grazian, S.V.H. Haugan, W. Holmes, F. Hormuth, A. Hornstrup, K. Jahnke, M. Kümmel, S. Kermiche, A. Kiessling, T. Kitching, R. Kohley, M. Kunz, H. Kurki-Suonio, S. Ligori, P.B. Lilje, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, F. Marulli, R. Massey, E. Medinaceli, S. Mei, M. Melchior, Y. Mellier, M. Meneghetti, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S.-M. Niemi, T. Nutma, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, G. Polenta, M. Poncet, F. Raison, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, D. Sapone, B. Sartoris, P. Schneider, A. Secroun, G. Seidel, S. Serrano, C. Sirignano, G. Sirri, L. Stanco, P. Tallada-Crespí, A.N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, T. Vassallo, G. Verdoes Kleijn, Y. Wang, J. Weller, G. Zamorani, J. Zoubian, and V. Scottez 
264 1 |c November 2023 
300 |b Illustrationen 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 29 November 2023 
500 |a Gesehen am 15.05.2024 
520 |a The material composition of asteroids is an essential piece of knowledge in the quest to understand the formation and evolution of the Solar System. Visual to near-infrared spectra or multiband photometry is required to constrain the material composition of asteroids, but we currently have such data, especially in the near-infrared wavelengths, for only a limited number of asteroids. This is a significant limitation considering the complex orbital structures of the asteroid populations. Up to 150 000 asteroids will be visible in the images of the upcoming ESA <i>Euclid<i/> space telescope, and the instruments of <i>Euclid<i/> will offer multiband visual to near-infrared photometry and slitless near-infrared spectra of these objects. Most of the asteroids will appear as streaks in the images. Due to the large number of images and asteroids, automated detection methods are needed. A non-machine-learning approach based on the Streak Det software was previously tested, but the results were not optimal for short and/or faint streaks. We set out to improve the capability to detect asteroid streaks in <i>Euclid<i/> images by using deep learning. We built, trained, and tested a three-step machine-learning pipeline with simulated <i>Euclid<i/> images. First, a convolutional neural network (CNN) detected streaks and their coordinates in full images, aiming to maximize the completeness (recall) of detections. Then, a recurrent neural network (RNN) merged snippets of long streaks detected in several parts by the CNN. Lastly, gradient-boosted trees (XGBoost) linked detected streaks between different <i>Euclid<i/> exposures to reduce the number of false positives and improve the purity (precision) of the sample. The deep-learning pipeline surpasses the completeness and reaches a similar level of purity of a non-machine-learning pipeline based on the StreakDet software. Additionally, the deep-learning pipeline can detect asteroids 0.25-0.5 magnitudes fainter than StreakDet. The deep-learning pipeline could result in a 50% increase in the number of detected asteroids compared to the StreakDet software. There is still scope for further refinement, particularly in improving the accuracy of streak coordinates and enhancing the completeness of the final stage of the pipeline, which involves linking detections across multiple exposures. 
700 1 |a Amendola, Luca  |d 1963-  |e VerfasserIn  |0 (DE-588)1029171270  |0 (DE-627)732547482  |0 (DE-576)377045128  |4 aut 
700 1 |a Jahnke, Knud  |e VerfasserIn  |0 (DE-588)1200875141  |0 (DE-627)1683870255  |4 aut 
700 1 |a Seidel, Gregor  |d 1977-  |e VerfasserIn  |0 (DE-588)139967559  |0 (DE-627)703521993  |0 (DE-576)314004769  |4 aut 
773 0 8 |i Enthalten in  |t Astronomy and astrophysics  |d Les Ulis : EDP Sciences, 1969  |g 679(2023) vom: Nov., Artikel-ID A135, Seite 1-18  |h Online-Ressource  |w (DE-627)253390222  |w (DE-600)1458466-9  |w (DE-576)072283351  |x 1432-0746  |7 nnas  |a Euclid identification of asteroid streaks in simulated images using deep learning 
773 1 8 |g volume:679  |g year:2023  |g month:11  |g elocationid:A135  |g pages:1-18  |g extent:18  |a Euclid identification of asteroid streaks in simulated images using deep learning 
856 4 0 |u https://doi.org/10.1051/0004-6361/202347551  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.aanda.org/articles/aa/abs/2023/11/aa47551-23/aa47551-23.html  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240515 
993 |a Article 
994 |a 2023 
998 |g 139967559  |a Seidel, Gregor  |m 139967559:Seidel, Gregor  |d 130000  |e 130000PS139967559  |k 0/130000/  |p 99 
998 |g 1200875141  |a Jahnke, Knud  |m 1200875141:Jahnke, Knud  |d 130000  |e 130000PJ1200875141  |k 0/130000/  |p 51 
998 |g 1029171270  |a Amendola, Luca  |m 1029171270:Amendola, Luca  |d 130000  |d 130300  |e 130000PA1029171270  |e 130300PA1029171270  |k 0/130000/  |k 1/130000/130300/  |p 11 
999 |a KXP-PPN1888708018  |e 4523531935 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"subtitle":"identification of asteroid streaks in simulated images using deep learning","title":"Euclid","title_sort":"Euclid"}],"id":{"eki":["1888708018"],"doi":["10.1051/0004-6361/202347551"]},"physDesc":[{"noteIll":"Illustrationen","extent":"18 S."}],"relHost":[{"name":{"displayForm":["European Southern Observatory (ESO)"]},"recId":"253390222","title":[{"subtitle":"an international weekly journal","title":"Astronomy and astrophysics","title_sort":"Astronomy and astrophysics"}],"id":{"eki":["253390222"],"issn":["1432-0746"],"zdb":["1458466-9"]},"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1969-","publisher":"EDP Sciences ; Springer","publisherPlace":"Les Ulis ; Berlin ; Heidelberg","dateIssuedKey":"1969"}],"language":["eng"],"part":{"text":"679(2023) vom: Nov., Artikel-ID A135, Seite 1-18","extent":"18","pages":"1-18","year":"2023","volume":"679"},"note":["Gesehen am 21.06.2024","Erscheint 36mal jährlich in 12 Bänden zu je 3 Ausgaben","Fortsetzung der Druck-Ausgabe"],"pubHistory":["1.1969 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Euclid identification of asteroid streaks in simulated images using deep learningAstronomy and astrophysics","corporate":[{"display":"European Southern Observatory","role":"isb"}],"titleAlt":[{"title":"Astronomy & astrophysics"},{"title":"a European journal"}]}],"origin":[{"dateIssuedDisp":"November 2023","dateIssuedKey":"2023"}],"language":["eng"],"name":{"displayForm":["M. Pöntinen, M. Granvik, A.A. Nucita, L. Conversi, B. Altieri, B. Carry, C.M. O’Riordan, D. Scott, N. Aghanim, A. Amara, L. Amendola, N. Auricchio, M. Baldi, D. Bonino, E. Branchini, M. Brescia, S. Camera, V. Capobianco, C. Carbone, J. Carretero, M. Castellano, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, Y. Copin, L. Corcione, F. Courbin, M. Cropper, A. Da Silva, H. Degaudenzi, J. Dinis, F. Dubath, X. Dupac, S. Dusini, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Garilli, W. Gillard, B. Gillis, C. Giocoli, A. Grazian, S.V.H. Haugan, W. Holmes, F. Hormuth, A. Hornstrup, K. Jahnke, M. Kümmel, S. Kermiche, A. Kiessling, T. Kitching, R. Kohley, M. Kunz, H. Kurki-Suonio, S. Ligori, P.B. Lilje, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, F. Marulli, R. Massey, E. Medinaceli, S. Mei, M. Melchior, Y. Mellier, M. Meneghetti, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S.-M. Niemi, T. Nutma, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, G. Polenta, M. Poncet, F. Raison, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, D. Sapone, B. Sartoris, P. Schneider, A. Secroun, G. Seidel, S. Serrano, C. Sirignano, G. Sirri, L. Stanco, P. Tallada-Crespí, A.N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, T. Vassallo, G. Verdoes Kleijn, Y. Wang, J. Weller, G. Zamorani, J. Zoubian, and V. Scottez"]},"recId":"1888708018","person":[{"family":"Pöntinen","role":"aut","display":"Pöntinen, Mikko","given":"Mikko"},{"family":"Amendola","role":"aut","given":"Luca","display":"Amendola, Luca"},{"family":"Jahnke","role":"aut","display":"Jahnke, Knud","given":"Knud"},{"given":"Gregor","display":"Seidel, Gregor","family":"Seidel","role":"aut"}],"note":["Online veröffentlicht: 29 November 2023","Gesehen am 15.05.2024"]} 
SRT |a POENTINENMEUCLID2023