Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes

Magnetic resonance imaging (MRI) is an essential diagnostic tool that suffers from prolonged scan times. Reconstruction methods can alleviate this limitation by recovering clinically usable images from accelerated acquisitions. In particular, learning-based methods promise performance leaps by emplo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dar, Salman Ul Hassan (VerfasserIn) , Öztürk, Şaban (VerfasserIn) , Özbey, Muzaffer (VerfasserIn) , Oguz, Kader Karli (VerfasserIn) , Çukur, Tolga (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 2023
In: Computers in biology and medicine
Year: 2023, Jahrgang: 167, Pages: 1-14
ISSN:1879-0534
DOI:10.1016/j.compbiomed.2023.107610
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.compbiomed.2023.107610
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0010482523010752
Volltext
Verfasserangaben:Salman Ul Hassan Dar, Şaban Öztürk, Muzaffer Özbey, Kader Karli Oguz, Tolga Çukur

MARC

LEADER 00000caa a2200000 c 4500
001 1889071307
003 DE-627
005 20240703180459.0
007 cr uuu---uuuuu
008 240517s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.compbiomed.2023.107610  |2 doi 
035 |a (DE-627)1889071307 
035 |a (DE-599)KXP1889071307 
035 |a (OCoLC)1443678711 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Dar, Salman Ul Hassan  |d 1990-  |e VerfasserIn  |0 (DE-588)1309366284  |0 (DE-627)187005489X  |4 aut 
245 1 0 |a Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes  |c Salman Ul Hassan Dar, Şaban Öztürk, Muzaffer Özbey, Kader Karli Oguz, Tolga Çukur 
264 1 |c December 2023 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar 20 October 2023, Version des Artikels 24 October 2023 
500 |a Gesehen am 17.05.2024 
520 |a Magnetic resonance imaging (MRI) is an essential diagnostic tool that suffers from prolonged scan times. Reconstruction methods can alleviate this limitation by recovering clinically usable images from accelerated acquisitions. In particular, learning-based methods promise performance leaps by employing deep neural networks as data-driven priors. A powerful approach uses scan-specific (SS) priors that leverage information regarding the underlying physical signal model for reconstruction. SS priors are learned on each individual test scan without the need for a training dataset, albeit they suffer from computationally burdening inference with nonlinear networks. An alternative approach uses scan-general (SG) priors that instead leverage information regarding the latent features of MRI images for reconstruction. SG priors are frozen at test time for efficiency, albeit they require learning from a large training dataset. Here, we introduce a novel parallel-stream fusion model (PSFNet) that synergistically fuses SS and SG priors for performant MRI reconstruction in low-data regimes, while maintaining competitive inference times to SG methods. PSFNet implements its SG prior based on a nonlinear network, yet it forms its SS prior based on a linear network to maintain efficiency. A pervasive framework for combining multiple priors in MRI reconstruction is algorithmic unrolling that uses serially alternated projections, causing error propagation under low-data regimes. To alleviate error propagation, PSFNet combines its SS and SG priors via a novel parallel-stream architecture with learnable fusion parameters. Demonstrations are performed on multi-coil brain MRI for varying amounts of training data. PSFNet outperforms SG methods in low-data regimes, and surpasses SS methods with few tens of training samples. On average across tasks, PSFNet achieves 3.1 dB higher PSNR, 2.8% higher SSIM, and 0.3 × lower RMSE than baselines. Furthermore, in both supervised and unsupervised setups, PSFNet requires an order of magnitude lower samples compared to SG methods, and enables an order of magnitude faster inference compared to SS methods. Thus, the proposed model improves deep MRI reconstruction with elevated learning and computational efficiency. 
650 4 |a Deep learning 
650 4 |a Image reconstruction 
650 4 |a Low data 
650 4 |a Scan general 
650 4 |a Scan specific 
650 4 |a Supervised 
650 4 |a Unsupervised 
700 1 |a Öztürk, Şaban  |e VerfasserIn  |4 aut 
700 1 |a Özbey, Muzaffer  |e VerfasserIn  |4 aut 
700 1 |a Oguz, Kader Karli  |e VerfasserIn  |4 aut 
700 1 |a Çukur, Tolga  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Computers in biology and medicine  |d Amsterdam [u.a.] : Elsevier Science, 1970  |g 167(2023) vom: Dez., Artikel-ID 107610, Seite 1-14  |h Online-Ressource  |w (DE-627)306356783  |w (DE-600)1496984-1  |w (DE-576)081952988  |x 1879-0534  |7 nnas  |a Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes 
773 1 8 |g volume:167  |g year:2023  |g month:12  |g elocationid:107610  |g pages:1-14  |g extent:14  |a Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes 
856 4 0 |u https://doi.org/10.1016/j.compbiomed.2023.107610  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0010482523010752  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240517 
993 |a Article 
994 |a 2023 
998 |g 1309366284  |a Dar, Salman ul Hassan  |m 1309366284:Dar, Salman ul Hassan  |d 910000  |d 910100  |e 910000PD1309366284  |e 910100PD1309366284  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1889071307  |e 4524657614 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1016/j.compbiomed.2023.107610"],"eki":["1889071307"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"December 2023"}],"name":{"displayForm":["Salman Ul Hassan Dar, Şaban Öztürk, Muzaffer Özbey, Kader Karli Oguz, Tolga Çukur"]},"relHost":[{"title":[{"title_sort":"Computers in biology and medicine","subtitle":"an international journal","title":"Computers in biology and medicine"}],"part":{"pages":"1-14","year":"2023","extent":"14","volume":"167","text":"167(2023) vom: Dez., Artikel-ID 107610, Seite 1-14"},"pubHistory":["1.1970/71 - 43.2013; Vol. 44.2014 -"],"language":["eng"],"recId":"306356783","disp":"Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimesComputers in biology and medicine","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 09.02.2021"],"id":{"zdb":["1496984-1"],"eki":["306356783"],"issn":["1879-0534"]},"origin":[{"dateIssuedDisp":"1970-","dateIssuedKey":"1970","publisher":"Elsevier Science","publisherPlace":"Amsterdam [u.a.]"}],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"noteIll":"Illustrationen","extent":"14 S."}],"title":[{"title":"Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes","title_sort":"Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes"}],"person":[{"role":"aut","display":"Dar, Salman Ul Hassan","roleDisplay":"VerfasserIn","given":"Salman Ul Hassan","family":"Dar"},{"given":"Şaban","family":"Öztürk","role":"aut","display":"Öztürk, Şaban","roleDisplay":"VerfasserIn"},{"given":"Muzaffer","family":"Özbey","role":"aut","display":"Özbey, Muzaffer","roleDisplay":"VerfasserIn"},{"family":"Oguz","given":"Kader Karli","display":"Oguz, Kader Karli","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Tolga","family":"Çukur","role":"aut","roleDisplay":"VerfasserIn","display":"Çukur, Tolga"}],"recId":"1889071307","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Online verfügbar 20 October 2023, Version des Artikels 24 October 2023","Gesehen am 17.05.2024"]} 
SRT |a DARSALMANUPARALLELST2023