Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients

Neural-network-based outcome predictions may enable further treatment personalization of patients with head and neck cancer. The development of neural networks can prove challenging when a limited number of cases is available. Therefore, we investigated whether multitask learning strategies, impleme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Starke, Sebastian (VerfasserIn) , Zwanenburg, Alex (VerfasserIn) , Leger, Karoline (VerfasserIn) , Lohaus, Fabian (VerfasserIn) , Linge, Annett (VerfasserIn) , Kalinauskaite, Goda (VerfasserIn) , Tinhofer, Inge (VerfasserIn) , Guberina, Nika (VerfasserIn) , Guberina, Maja (VerfasserIn) , Balermpas, Panagiotis (VerfasserIn) , Grün, Jens von der (VerfasserIn) , Ganswindt, Ute (VerfasserIn) , Belka, Claus (VerfasserIn) , Peeken, Jan C. (VerfasserIn) , Combs, Stephanie E. (VerfasserIn) , Boeke, Simon (VerfasserIn) , Zips, Daniel (VerfasserIn) , Richter, Christian (VerfasserIn) , Troost, Esther G. C. (VerfasserIn) , Krause, Mechthild (VerfasserIn) , Baumann, Michael (VerfasserIn) , Löck, Steffen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 9 October 2023
In: Cancers
Year: 2023, Jahrgang: 15, Heft: 19, Pages: 1-21
ISSN:2072-6694
DOI:10.3390/cancers15194897
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/cancers15194897
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2072-6694/15/19/4897
Volltext
Verfasserangaben:Sebastian Starke, Alex Zwanenburg, Karoline Leger, Fabian Lohaus, Annett Linge, Goda Kalinauskaite, Inge Tinhofer, Nika Guberina, Maja Guberina, Panagiotis Balermpas, Jens von der Grün, Ute Ganswindt, Claus Belka, Jan C. Peeken, Stephanie E. Combs, Simon Boeke, Daniel Zips, Christian Richter, Esther G.C. Troost, Mechthild Krause, Michael Baumann and Steffen Löck

MARC

LEADER 00000caa a2200000 c 4500
001 1889738956
003 DE-627
005 20240703181708.0
007 cr uuu---uuuuu
008 240524s2023 xx |||||o 00| ||eng c
024 7 |a 10.3390/cancers15194897  |2 doi 
035 |a (DE-627)1889738956 
035 |a (DE-599)KXP1889738956 
035 |a (OCoLC)1443678898 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Starke, Sebastian  |e VerfasserIn  |0 (DE-588)1228557764  |0 (DE-627)1750399857  |4 aut 
245 1 0 |a Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients  |c Sebastian Starke, Alex Zwanenburg, Karoline Leger, Fabian Lohaus, Annett Linge, Goda Kalinauskaite, Inge Tinhofer, Nika Guberina, Maja Guberina, Panagiotis Balermpas, Jens von der Grün, Ute Ganswindt, Claus Belka, Jan C. Peeken, Stephanie E. Combs, Simon Boeke, Daniel Zips, Christian Richter, Esther G.C. Troost, Mechthild Krause, Michael Baumann and Steffen Löck 
264 1 |c 9 October 2023 
300 |b Illustrationen 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.05.2024 
520 |a Neural-network-based outcome predictions may enable further treatment personalization of patients with head and neck cancer. The development of neural networks can prove challenging when a limited number of cases is available. Therefore, we investigated whether multitask learning strategies, implemented through the simultaneous optimization of two distinct outcome objectives (multi-outcome) and combined with a tumor segmentation task, can lead to improved performance of convolutional neural networks (CNNs) and vision transformers (ViTs). Model training was conducted on two distinct multicenter datasets for the endpoints loco-regional control (LRC) and progression-free survival (PFS), respectively. The first dataset consisted of pre-treatment computed tomography (CT) imaging for 290 patients and the second dataset contained combined positron emission tomography (PET)/CT data of 224 patients. Discriminative performance was assessed by the concordance index (C-index). Risk stratification was evaluated using log-rank tests. Across both datasets, CNN and ViT model ensembles achieved similar results. Multitask approaches showed favorable performance in most investigations. Multi-outcome CNN models trained with segmentation loss were identified as the optimal strategy across cohorts. On the PET/CT dataset, an ensemble of multi-outcome CNNs trained with segmentation loss achieved the best discrimination (C-index: 0.29, 95% confidence interval (CI): 0.22-0.36) and successfully stratified patients into groups with low and high risk of disease progression (p=0.003). On the CT dataset, ensembles of multi-outcome CNNs and of single-outcome ViTs trained with segmentation loss performed best (C-index: 0.26 and 0.26, CI: 0.18-0.34 and 0.18-0.35, respectively), both with significant risk stratification for LRC in independent validation (p=0.002 and p=0.011). Further validation of the developed multitask-learning models is planned based on a prospective validation study, which has recently completed recruitment. 
650 4 |a convolutional neural network 
650 4 |a Cox proportional hazards 
650 4 |a discrete-time survival models 
650 4 |a head and neck cancer 
650 4 |a loco-regional control 
650 4 |a multitask learning 
650 4 |a progression-free survival 
650 4 |a survival analysis 
650 4 |a tumor segmentation 
650 4 |a vision transformer 
700 1 |a Zwanenburg, Alex  |e VerfasserIn  |4 aut 
700 1 |a Leger, Karoline  |e VerfasserIn  |4 aut 
700 1 |a Lohaus, Fabian  |e VerfasserIn  |4 aut 
700 1 |a Linge, Annett  |e VerfasserIn  |4 aut 
700 1 |a Kalinauskaite, Goda  |e VerfasserIn  |4 aut 
700 1 |a Tinhofer, Inge  |e VerfasserIn  |4 aut 
700 1 |a Guberina, Nika  |e VerfasserIn  |4 aut 
700 1 |a Guberina, Maja  |e VerfasserIn  |4 aut 
700 1 |a Balermpas, Panagiotis  |e VerfasserIn  |4 aut 
700 1 |a Grün, Jens von der  |e VerfasserIn  |4 aut 
700 1 |a Ganswindt, Ute  |e VerfasserIn  |4 aut 
700 1 |a Belka, Claus  |e VerfasserIn  |4 aut 
700 1 |a Peeken, Jan C.  |e VerfasserIn  |4 aut 
700 1 |a Combs, Stephanie E.  |e VerfasserIn  |4 aut 
700 1 |a Boeke, Simon  |e VerfasserIn  |4 aut 
700 1 |a Zips, Daniel  |e VerfasserIn  |4 aut 
700 1 |a Richter, Christian  |e VerfasserIn  |4 aut 
700 1 |a Troost, Esther G. C.  |e VerfasserIn  |4 aut 
700 1 |a Krause, Mechthild  |e VerfasserIn  |4 aut 
700 1 |a Baumann, Michael  |d 1962-  |e VerfasserIn  |0 (DE-588)131385399  |0 (DE-627)508500222  |0 (DE-576)298443244  |4 aut 
700 1 |a Löck, Steffen  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Cancers  |d Basel : MDPI, 2009  |g 15(2023), 19, Artikel-ID p4897, Seite 1-21  |h Online-Ressource  |w (DE-627)614095670  |w (DE-600)2527080-1  |w (DE-576)313958548  |x 2072-6694  |7 nnas  |a Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients 
773 1 8 |g volume:15  |g year:2023  |g number:19  |g elocationid:p4897  |g pages:1-21  |g extent:21  |a Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients 
856 4 0 |u https://doi.org/10.3390/cancers15194897  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2072-6694/15/19/4897  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240524 
993 |a Article 
994 |a 2023 
998 |g 131385399  |a Baumann, Michael  |m 131385399:Baumann, Michael  |d 50000  |e 50000PB131385399  |k 0/50000/  |p 21 
999 |a KXP-PPN1889738956  |e 4528908611 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"title":[{"title_sort":"Cancers","title":"Cancers"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 27.05.2020"],"pubHistory":["1.2009 -"],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["614095670"],"issn":["2072-6694"],"zdb":["2527080-1"]},"origin":[{"publisherPlace":"Basel","publisher":"MDPI","dateIssuedKey":"2009","dateIssuedDisp":"2009-"}],"part":{"issue":"19","year":"2023","pages":"1-21","volume":"15","text":"15(2023), 19, Artikel-ID p4897, Seite 1-21","extent":"21"},"name":{"displayForm":["Molecular Diversity Preservation International (MDPI)"]},"recId":"614095670","disp":"Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patientsCancers"}],"note":["Gesehen am 24.05.2024"],"id":{"eki":["1889738956"],"doi":["10.3390/cancers15194897"]},"origin":[{"dateIssuedDisp":"9 October 2023","dateIssuedKey":"2023"}],"name":{"displayForm":["Sebastian Starke, Alex Zwanenburg, Karoline Leger, Fabian Lohaus, Annett Linge, Goda Kalinauskaite, Inge Tinhofer, Nika Guberina, Maja Guberina, Panagiotis Balermpas, Jens von der Grün, Ute Ganswindt, Claus Belka, Jan C. Peeken, Stephanie E. Combs, Simon Boeke, Daniel Zips, Christian Richter, Esther G.C. Troost, Mechthild Krause, Michael Baumann and Steffen Löck"]},"recId":"1889738956","person":[{"family":"Starke","role":"aut","given":"Sebastian","display":"Starke, Sebastian"},{"family":"Zwanenburg","given":"Alex","role":"aut","display":"Zwanenburg, Alex"},{"given":"Karoline","role":"aut","family":"Leger","display":"Leger, Karoline"},{"display":"Lohaus, Fabian","family":"Lohaus","role":"aut","given":"Fabian"},{"given":"Annett","role":"aut","family":"Linge","display":"Linge, Annett"},{"role":"aut","given":"Goda","family":"Kalinauskaite","display":"Kalinauskaite, Goda"},{"given":"Inge","role":"aut","family":"Tinhofer","display":"Tinhofer, Inge"},{"display":"Guberina, Nika","given":"Nika","role":"aut","family":"Guberina"},{"family":"Guberina","role":"aut","given":"Maja","display":"Guberina, Maja"},{"given":"Panagiotis","role":"aut","family":"Balermpas","display":"Balermpas, Panagiotis"},{"family":"Grün","role":"aut","given":"Jens von der","display":"Grün, Jens von der"},{"display":"Ganswindt, Ute","family":"Ganswindt","given":"Ute","role":"aut"},{"display":"Belka, Claus","given":"Claus","role":"aut","family":"Belka"},{"display":"Peeken, Jan C.","role":"aut","given":"Jan C.","family":"Peeken"},{"given":"Stephanie E.","role":"aut","family":"Combs","display":"Combs, Stephanie E."},{"display":"Boeke, Simon","family":"Boeke","given":"Simon","role":"aut"},{"display":"Zips, Daniel","family":"Zips","role":"aut","given":"Daniel"},{"display":"Richter, Christian","given":"Christian","role":"aut","family":"Richter"},{"family":"Troost","role":"aut","given":"Esther G. C.","display":"Troost, Esther G. C."},{"family":"Krause","given":"Mechthild","role":"aut","display":"Krause, Mechthild"},{"display":"Baumann, Michael","role":"aut","given":"Michael","family":"Baumann"},{"display":"Löck, Steffen","family":"Löck","role":"aut","given":"Steffen"}],"title":[{"title_sort":"Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients","title":"Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients"}],"physDesc":[{"noteIll":"Illustrationen","extent":"21 S."}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a STARKESEBAMULTITASKL9202