Metamedian: an R package for meta-analyzing studies reporting medians

When performing an aggregate data meta-analysis of a continuous outcome, researchers often come across primary studies that report the sample median of the outcome. However, standard meta-analytic methods typically cannot be directly applied in this setting. In recent years, there has been substanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McGrath, Sean (VerfasserIn) , Zhao, Xiaofei (VerfasserIn) , Ozturk, Omer (VerfasserIn) , Katzenschlager, Stephan (VerfasserIn) , Steele, Russell (VerfasserIn) , Benedetti, Andrea (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 December 2023
In: Research synthesis methods
Year: 2024, Jahrgang: 15, Heft: 2, Pages: 332-346
ISSN:1759-2887
DOI:10.1002/jrsm.1686
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/jrsm.1686
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.1686
Volltext
Verfasserangaben:Sean McGrath, XiaoFei Zhao, Omer Ozturk, Stephan Katzenschlager, Russell Steele, Andrea Benedetti
Beschreibung
Zusammenfassung:When performing an aggregate data meta-analysis of a continuous outcome, researchers often come across primary studies that report the sample median of the outcome. However, standard meta-analytic methods typically cannot be directly applied in this setting. In recent years, there has been substantial development in statistical methods to incorporate primary studies reporting sample medians in meta-analysis, yet there are currently no comprehensive software tools implementing these methods. In this paper, we present the metamedian R package, a freely available and open-source software tool for meta-analyzing primary studies that report sample medians. We summarize the main features of the software and illustrate its application through real data examples involving risk factors for a severe course of COVID-19.
Beschreibung:Gesehen am 27.05.2024
Beschreibung:Online Resource
ISSN:1759-2887
DOI:10.1002/jrsm.1686