Self-energy correction to the hyperfine splitting and the electron g factor in hydrogenlike ions

The hyperfine structure (hfs) and the 𝑔 factor of a bound electron are caused by external magnetic fields. For the hfs, the magnetic field is due to the nuclear spin. A uniform-in-space and constant-in-time magnetic field is used to probe the bound-electron 𝑔 factor. The self-energy corrections to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yerokhin, Vladimir (VerfasserIn) , Jentschura, Ulrich D. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 2010
In: Physical review. A, Atomic, molecular, and optical physics
Year: 2010, Jahrgang: 81, Heft: 1, Pages: 1-14
ISSN:1094-1622
DOI:10.1103/PhysRevA.81.012502
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.81.012502
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.81.012502
Volltext
Verfasserangaben:Vladimir A. Yerokhin (Max-Planck-Institut für Kernphysik Heidelberg, and Center for Advanced Studies, St. Petersburg State Polytechnical University), Ulrich D. Jentschura (Department of Physics, Missouri University of Science and Technology and Institut für Theoretische Physik, Universität Heidelberg
Beschreibung
Zusammenfassung:The hyperfine structure (hfs) and the 𝑔 factor of a bound electron are caused by external magnetic fields. For the hfs, the magnetic field is due to the nuclear spin. A uniform-in-space and constant-in-time magnetic field is used to probe the bound-electron 𝑔 factor. The self-energy corrections to these effects are more difficult to evaluate than those to the Lamb shift. Here, we describe a numerical approach for both effects in the notoriously problematic regime of hydrogenlike bound systems with low nuclear charge numbers. The calculation is nonperturbative in the binding Coulomb field. Accurate numerical values for the remainder functions are provided for 2⁢𝑃 states and for 𝑛𝑆 states with 𝑛=1,2,3.
Beschreibung:Gesehen am 31.05.2024
Beschreibung:Online Resource
ISSN:1094-1622
DOI:10.1103/PhysRevA.81.012502