How to understand limitations of generative networks

Well-trained classifiers and their complete weight distributions provide us with a well-motivated and practicable method to test generative networks in particle physics. We illustrate their benefits for distribution-shifted jets, calorimeter showers, and reconstruction-level events. In all cases, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Das, Ranit (VerfasserIn) , Favaro, Luigi (VerfasserIn) , Heimel, Theo (VerfasserIn) , Krause, Claudius (VerfasserIn) , Plehn, Tilman (VerfasserIn) , Shih, David (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 25 January 2024
In: SciPost physics
Year: 2024, Jahrgang: 16, Heft: 1, Pages: 1-32
ISSN:2542-4653
DOI:10.21468/SciPostPhys.16.1.031
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.16.1.031
Verlag, lizenzpflichtig, Volltext: https://scipost.org/10.21468/SciPostPhys.16.1.031
Volltext
Verfasserangaben:Ranit Das, Luigi Favaro, Theo Heimel, Claudius Krause, Tilman Plehn and David Shih
Beschreibung
Zusammenfassung:Well-trained classifiers and their complete weight distributions provide us with a well-motivated and practicable method to test generative networks in particle physics. We illustrate their benefits for distribution-shifted jets, calorimeter showers, and reconstruction-level events. In all cases, the classifier weights make for a powerful test of the generative network, identify potential problems in the density estimation, relate them to the underlying physics, and tie in with a comprehensive precision and uncertainty treatment for generative networks.
Beschreibung:Veröffentlicht: 25. Januar 2024
Gesehen am 05.06.2024
Beschreibung:Online Resource
ISSN:2542-4653
DOI:10.21468/SciPostPhys.16.1.031