Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancer

Background - - The latest large language models (LLMs) solve unseen problems via user-defined text prompts without the need for retraining, offering potentially more efficient information extraction from free-text medical records than manual annotation. - - Purpose - - To compare the performance...

Full description

Saved in:
Bibliographic Details
Main Authors: Fink, Matthias A. (Author) , Bischoff, Arved (Author) , Fink, Christoph Andreas (Author) , Moll, Martin (Author) , Kroschke, Jonas (Author) , Dulz, Luca (Author) , Heußel, Claus Peter (Author) , Kauczor, Hans-Ulrich (Author) , Weber, Tim (Author)
Format: Article (Journal)
Language:English
Published: September 2023
In: Radiology
Year: 2023, Volume: 308, Issue: 3, Pages: 1-9
ISSN:1527-1315
DOI:10.1148/radiol.231362
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1148/radiol.231362
Verlag, lizenzpflichtig, Volltext: https://pubs.rsna.org/doi/10.1148/radiol.231362
Get full text
Author Notes:Matthias A. Fink, MD, Arved Bischoff, MD, Christoph A. Fink, MD, Martin Moll, MD, Jonas Kroschke, MD, Luca Dulz, MSc, Claus Peter Heußel, MD, Hans-Ulrich Kauczor, MD, Tim F. Weber, MD

MARC

LEADER 00000caa a2200000 c 4500
001 1890800619
003 DE-627
005 20241203081452.0
007 cr uuu---uuuuu
008 240606s2023 xx |||||o 00| ||eng c
024 7 |a 10.1148/radiol.231362  |2 doi 
035 |a (DE-627)1890800619 
035 |a (DE-599)KXP1890800619 
035 |a (OCoLC)1443679481 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Fink, Matthias A.  |d 1989-  |e VerfasserIn  |0 (DE-588)1193521289  |0 (DE-627)1672256518  |4 aut 
245 1 0 |a Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancer  |c Matthias A. Fink, MD, Arved Bischoff, MD, Christoph A. Fink, MD, Martin Moll, MD, Jonas Kroschke, MD, Luca Dulz, MSc, Claus Peter Heußel, MD, Hans-Ulrich Kauczor, MD, Tim F. Weber, MD 
264 1 |c September 2023 
300 |b Illustrationen 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 19. September 2023 
500 |a Gesehen am 06.06.2024 
520 |a Background - - The latest large language models (LLMs) solve unseen problems via user-defined text prompts without the need for retraining, offering potentially more efficient information extraction from free-text medical records than manual annotation. - - Purpose - - To compare the performance of the LLMs ChatGPT and GPT-4 in data mining and labeling oncologic phenotypes from free-text CT reports on lung cancer by using user-defined prompts. - - Materials and Methods - - This retrospective study included patients who underwent lung cancer follow-up CT between September 2021 and March 2023. A subset of 25 reports was reserved for prompt engineering to instruct the LLMs in extracting lesion diameters, labeling metastatic disease, and assessing oncologic progression. This output was fed into a rule-based natural language processing pipeline to match ground truth annotations from four radiologists and derive performance metrics. The oncologic reasoning of LLMs was rated on a five-point Likert scale for factual correctness and accuracy. The occurrence of confabulations was recorded. Statistical analyses included Wilcoxon signed rank and McNemar tests. - - Results - - On 424 CT reports from 424 patients (mean age, 65 years ± 11 [SD]; 265 male), GPT-4 outperformed ChatGPT in extracting lesion parameters (98.6% vs 84.0%, P < .001), resulting in 96% correctly mined reports (vs 67% for ChatGPT, P < .001). GPT-4 achieved higher accuracy in identification of metastatic disease (98.1% [95% CI: 97.7, 98.5] vs 90.3% [95% CI: 89.4, 91.0]) and higher performance in generating correct labels for oncologic progression (F1 score, 0.96 [95% CI: 0.94, 0.98] vs 0.91 [95% CI: 0.89, 0.94]) (both P < .001). In oncologic reasoning, GPT-4 had higher Likert scale scores for factual correctness (4.3 vs 3.9) and accuracy (4.4 vs 3.3), with a lower rate of confabulation (1.7% vs 13.7%) than ChatGPT (all P < .001). - - Conclusion - - When using user-defined prompts, GPT-4 outperformed ChatGPT in extracting oncologic phenotypes from free-text CT reports on lung cancer and demonstrated better oncologic reasoning with fewer confabulations. 
700 1 |a Bischoff, Arved  |d 1990-  |e VerfasserIn  |0 (DE-588)1153638312  |0 (DE-627)101513758X  |0 (DE-576)500361304  |4 aut 
700 1 |a Fink, Christoph Andreas  |d 1992-  |e VerfasserIn  |0 (DE-588)1163354759  |0 (DE-627)1027642225  |0 (DE-576)507933028  |4 aut 
700 1 |a Moll, Martin  |e VerfasserIn  |0 (DE-588)1194261892  |0 (DE-627)1676208275  |4 aut 
700 1 |a Kroschke, Jonas  |d 1992-  |e VerfasserIn  |0 (DE-588)1200884922  |0 (DE-627)1683885716  |4 aut 
700 1 |a Dulz, Luca  |e VerfasserIn  |0 (DE-588)1331850746  |0 (DE-627)1890801445  |4 aut 
700 1 |a Heußel, Claus Peter  |e VerfasserIn  |0 (DE-588)1048631389  |0 (DE-627)780769422  |0 (DE-576)40288146X  |4 aut 
700 1 |a Kauczor, Hans-Ulrich  |d 1962-  |e VerfasserIn  |0 (DE-588)139267123  |0 (DE-627)70327113X  |0 (DE-576)310955327  |4 aut 
700 1 |a Weber, Tim  |d 1977-  |e VerfasserIn  |0 (DE-588)133392694  |0 (DE-627)544045017  |0 (DE-576)299816613  |4 aut 
773 0 8 |i Enthalten in  |t Radiology  |d Oak Brook, Ill. : Soc., 1923  |g 308(2023), 3 vom: Sept., Artikel-ID e231362, Seite 1-9  |h Online-Ressource  |w (DE-627)320487253  |w (DE-600)2010588-5  |w (DE-576)094056706  |x 1527-1315  |7 nnas  |a Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancer 
773 1 8 |g volume:308  |g year:2023  |g number:3  |g month:09  |g elocationid:e231362  |g pages:1-9  |g extent:9  |a Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancer 
856 4 0 |u https://doi.org/10.1148/radiol.231362  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://pubs.rsna.org/doi/10.1148/radiol.231362  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240606 
993 |a Article 
994 |a 2024 
998 |g 133392694  |a Weber, Tim  |m 133392694:Weber, Tim  |d 910000  |d 911400  |d 50000  |e 910000PW133392694  |e 911400PW133392694  |e 50000PW133392694  |k 0/910000/  |k 1/910000/911400/  |k 0/50000/  |p 9  |y j 
998 |g 139267123  |a Kauczor, Hans-Ulrich  |m 139267123:Kauczor, Hans-Ulrich  |d 910000  |d 911400  |e 910000PK139267123  |e 911400PK139267123  |k 0/910000/  |k 1/910000/911400/  |p 8 
998 |g 1048631389  |a Heußel, Claus Peter  |m 1048631389:Heußel, Claus Peter  |d 50000  |e 50000PH1048631389  |k 0/50000/  |p 7 
998 |g 1331850746  |a Dulz, Luca  |m 1331850746:Dulz, Luca  |d 910000  |d 911400  |e 910000PD1331850746  |e 911400PD1331850746  |k 0/910000/  |k 1/910000/911400/  |p 6 
998 |g 1194261892  |a Moll, Martin  |m 1194261892:Moll, Martin  |p 4 
998 |g 1163354759  |a Fink, Christoph Andreas  |m 1163354759:Fink, Christoph Andreas  |d 910000  |d 911400  |e 910000PF1163354759  |e 911400PF1163354759  |k 0/910000/  |k 1/910000/911400/  |p 3 
998 |g 1153638312  |a Bischoff, Arved  |m 1153638312:Bischoff, Arved  |d 910000  |d 911400  |e 910000PB1153638312  |e 911400PB1153638312  |k 0/910000/  |k 1/910000/911400/  |p 2 
998 |g 1193521289  |a Fink, Matthias A.  |m 1193521289:Fink, Matthias A.  |d 910000  |d 911400  |e 910000PF1193521289  |e 911400PF1193521289  |k 0/910000/  |k 1/910000/911400/  |p 1  |x j 
999 |a KXP-PPN1890800619  |e 4534962940 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"noteIll":"Illustrationen","extent":"9 S."}],"relHost":[{"language":["eng"],"disp":"Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancerRadiology","type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"Radiology","title":"Radiology"}],"part":{"issue":"3","text":"308(2023), 3 vom: Sept., Artikel-ID e231362, Seite 1-9","pages":"1-9","extent":"9","year":"2023","volume":"308"},"corporate":[{"role":"isb","display":"Radiological Society of North America"}],"recId":"320487253","name":{"displayForm":["The Radiological Society of North America"]},"pubHistory":["1.1923 -"],"id":{"issn":["1527-1315"],"eki":["320487253"],"zdb":["2010588-5"]},"note":["Fortsetzung der Druck-Ausgabe","Gesehen 07.11.22"],"origin":[{"dateIssuedDisp":"1923-","publisher":"Soc.","dateIssuedKey":"1923","publisherPlace":"Oak Brook, Ill."}],"physDesc":[{"extent":"Online-Ressource"}]}],"person":[{"family":"Fink","given":"Matthias A.","role":"aut","display":"Fink, Matthias A."},{"family":"Bischoff","given":"Arved","display":"Bischoff, Arved","role":"aut"},{"display":"Fink, Christoph Andreas","role":"aut","family":"Fink","given":"Christoph Andreas"},{"role":"aut","display":"Moll, Martin","family":"Moll","given":"Martin"},{"family":"Kroschke","given":"Jonas","display":"Kroschke, Jonas","role":"aut"},{"given":"Luca","family":"Dulz","role":"aut","display":"Dulz, Luca"},{"role":"aut","display":"Heußel, Claus Peter","given":"Claus Peter","family":"Heußel"},{"family":"Kauczor","given":"Hans-Ulrich","role":"aut","display":"Kauczor, Hans-Ulrich"},{"role":"aut","display":"Weber, Tim","given":"Tim","family":"Weber"}],"title":[{"title_sort":"Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancer","title":"Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancer"}],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"September 2023"}],"note":["Online veröffentlicht: 19. September 2023","Gesehen am 06.06.2024"],"id":{"eki":["1890800619"],"doi":["10.1148/radiol.231362"]},"recId":"1890800619","type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Matthias A. Fink, MD, Arved Bischoff, MD, Christoph A. Fink, MD, Martin Moll, MD, Jonas Kroschke, MD, Luca Dulz, MSc, Claus Peter Heußel, MD, Hans-Ulrich Kauczor, MD, Tim F. Weber, MD"]},"language":["eng"]} 
SRT |a FINKMATTHIPOTENTIALO2023