Deep learning-accelerated image reconstruction in MRI of the orbit to shorten acquisition time and enhance image quality

Background and Purpose This study explores the use of deep learning (DL) techniques in MRI of the orbit to enhance imaging. Standard protocols, although detailed, have lengthy acquisition times. We investigate DL-based methods for T2-weighted and T1-weighted, fat-saturated, contrast-enhanced turbo s...

Full description

Saved in:
Bibliographic Details
Main Authors: Estler, Arne (Author) , Zerweck, Leonie (Author) , Brunnée, Merle (Author) , Estler, Bent (Author) , Richter, Vivien (Author) , Örgel, Anja (Author) , Bürkle, Eva (Author) , Becker, Hannes (Author) , Hurth, Helene (Author) , Stahl, Stéphane (Author) , Konrad, Eva-Maria (Author) , Kelbsch, Carina (Author) , Ernemann, Ulrike (Author) , Hauser, Till-Karsten (Author) , Gohla, Georg (Author)
Format: Article (Journal)
Language:English
Published: Mar 2024
In: Journal of neuroimaging
Year: 2024, Volume: 34, Issue: 2, Pages: 232-240
ISSN:1552-6569
DOI:10.1111/jon.13187
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1111/jon.13187
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/jon.13187
Get full text
Author Notes:Arne Estler, Leonie Zerweck, Merle Brunnée, Bent Estler, Vivien Richter, Anja Örgel, Eva Bürkle, Hannes Becker, Helene Hurth, Stéphane Stahl, Eva-Maria Konrad, Carina Kelbsch, Ulrike Ernemann, Till-Karsten Hauser, Georg Gohla

MARC

LEADER 00000caa a2200000 c 4500
001 1891018345
003 DE-627
005 20241205141628.0
007 cr uuu---uuuuu
008 240610s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/jon.13187  |2 doi 
035 |a (DE-627)1891018345 
035 |a (DE-599)KXP1891018345 
035 |a (OCoLC)1475287980 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Estler, Arne  |e VerfasserIn  |0 (DE-588)125687972X  |0 (DE-627)1801026831  |4 aut 
245 1 0 |a Deep learning-accelerated image reconstruction in MRI of the orbit to shorten acquisition time and enhance image quality  |c Arne Estler, Leonie Zerweck, Merle Brunnée, Bent Estler, Vivien Richter, Anja Örgel, Eva Bürkle, Hannes Becker, Helene Hurth, Stéphane Stahl, Eva-Maria Konrad, Carina Kelbsch, Ulrike Ernemann, Till-Karsten Hauser, Georg Gohla 
264 1 |c Mar 2024 
300 |b Illustrationen, Diagramme 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 10.06.2024 
520 |a Background and Purpose This study explores the use of deep learning (DL) techniques in MRI of the orbit to enhance imaging. Standard protocols, although detailed, have lengthy acquisition times. We investigate DL-based methods for T2-weighted and T1-weighted, fat-saturated, contrast-enhanced turbo spin echo (TSE) sequences, aiming to improve image quality, reduce acquisition time, minimize artifacts, and enhance diagnostic confidence in orbital imaging. Methods In a 3-Tesla MRI study of 50 patients evaluating orbital diseases from March to July 2023, conventional (TSES) and DL TSE sequences (TSEDL) were used. Two neuroradiologists independently assessed the image datasets for image quality, diagnostic confidence, noise levels, artifacts, and image sharpness using a randomized and blinded 4-point Likert scale. Results TSEDL significantly reduced image noise and artifacts, enhanced image sharpness, and decreased scan time, outperforming TSES (p < .05). TSEDL showed superior overall image quality and diagnostic confidence, with relevant findings effectively detected in both DL-based and conventional images. In 94% of cases, readers preferred accelerated imaging. Conclusion The study proved that using DL for MRI image reconstruction in orbital scans significantly cut acquisition time by 69%. This approach also enhanced image quality, reduced image noise, sharpened images, and boosted diagnostic confidence. 
650 4 |a acquisition time 
650 4 |a deep learning reconstruction 
650 4 |a deep resolve boost 
650 4 |a image processing 
650 4 |a image quality 
650 4 |a magnetic resonance imaging 
650 4 |a orbital imaging 
700 1 |a Zerweck, Leonie  |e VerfasserIn  |0 (DE-588)1259281671  |0 (DE-627)1806105268  |4 aut 
700 1 |a Brunnée, Merle  |e VerfasserIn  |0 (DE-588)1253346364  |0 (DE-627)1795502088  |4 aut 
700 1 |a Estler, Bent  |e VerfasserIn  |0 (DE-588)133256285X  |0 (DE-627)1891018361  |4 aut 
700 1 |a Richter, Vivien  |e VerfasserIn  |4 aut 
700 1 |a Örgel, Anja  |e VerfasserIn  |4 aut 
700 1 |a Bürkle, Eva  |e VerfasserIn  |4 aut 
700 1 |a Becker, Hannes  |e VerfasserIn  |4 aut 
700 1 |a Hurth, Helene  |e VerfasserIn  |4 aut 
700 1 |a Stahl, Stéphane  |d 1977-  |e VerfasserIn  |0 (DE-588)130297828  |0 (DE-627)497648946  |0 (DE-576)298113155  |4 aut 
700 1 |a Konrad, Eva-Maria  |e VerfasserIn  |0 (DE-588)1120153727  |0 (DE-627)873252438  |0 (DE-576)480167974  |4 aut 
700 1 |a Kelbsch, Carina  |e VerfasserIn  |4 aut 
700 1 |a Ernemann, Ulrike  |e VerfasserIn  |4 aut 
700 1 |a Hauser, Till-Karsten  |d 1972-  |e VerfasserIn  |0 (DE-588)123600774  |0 (DE-627)082653143  |0 (DE-576)184969425  |4 aut 
700 1 |a Gohla, Georg  |d 1987-  |e VerfasserIn  |0 (DE-588)1139073109  |0 (DE-627)896675785  |0 (DE-576)492915946  |4 aut 
773 0 8 |i Enthalten in  |t Journal of neuroimaging  |d Berlin [u.a.] : Wiley-Blackwell, 1991  |g 34(2024), 2, Seite 232-240  |h Online-Ressource  |w (DE-627)325297428  |w (DE-600)2035400-9  |w (DE-576)306829312  |x 1552-6569  |7 nnas  |a Deep learning-accelerated image reconstruction in MRI of the orbit to shorten acquisition time and enhance image quality 
773 1 8 |g volume:34  |g year:2024  |g number:2  |g pages:232-240  |g extent:9  |a Deep learning-accelerated image reconstruction in MRI of the orbit to shorten acquisition time and enhance image quality 
856 4 0 |u https://doi.org/10.1111/jon.13187  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1111/jon.13187  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240610 
993 |a Article 
994 |a 2024 
998 |g 133256285X  |a Estler, Bent  |m 133256285X:Estler, Bent  |d 910000  |d 910100  |e 910000PE133256285X  |e 910100PE133256285X  |k 0/910000/  |k 1/910000/910100/  |p 4 
998 |g 1253346364  |a Brunnée, Merle  |m 1253346364:Brunnée, Merle  |d 910000  |d 911100  |e 910000PB1253346364  |e 911100PB1253346364  |k 0/910000/  |k 1/910000/911100/  |p 3 
999 |a KXP-PPN1891018345  |e 4536083707 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1891018345"],"doi":["10.1111/jon.13187"]},"origin":[{"dateIssuedDisp":"Mar 2024","dateIssuedKey":"2024"}],"name":{"displayForm":["Arne Estler, Leonie Zerweck, Merle Brunnée, Bent Estler, Vivien Richter, Anja Örgel, Eva Bürkle, Hannes Becker, Helene Hurth, Stéphane Stahl, Eva-Maria Konrad, Carina Kelbsch, Ulrike Ernemann, Till-Karsten Hauser, Georg Gohla"]},"relHost":[{"pubHistory":["1.1991 -"],"part":{"volume":"34","text":"34(2024), 2, Seite 232-240","extent":"9","year":"2024","pages":"232-240","issue":"2"},"titleAlt":[{"title":"Neuroimaging"}],"disp":"Deep learning-accelerated image reconstruction in MRI of the orbit to shorten acquisition time and enhance image qualityJournal of neuroimaging","note":["Gesehen am 25.02.2016"],"type":{"media":"Online-Ressource","bibl":"periodical"},"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Society of Neuroimaging","role":"isb"}],"language":["eng"],"recId":"325297428","title":[{"title":"Journal of neuroimaging","subtitle":"official journal of the American Society of Neuroimaging","title_sort":"Journal of neuroimaging"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1991","publisher":"Wiley-Blackwell ; Sage Publ. ; Blackwell","dateIssuedDisp":"1991-","publisherPlace":"Berlin [u.a.] ; Thousand Oaks, Calif. ; Berlin [u.a.]"}],"id":{"issn":["1552-6569"],"zdb":["2035400-9"],"doi":["10.1111/(ISSN)1552-6569"],"eki":["325297428"]}}],"physDesc":[{"extent":"9 S.","noteIll":"Illustrationen, Diagramme"}],"title":[{"title_sort":"Deep learning-accelerated image reconstruction in MRI of the orbit to shorten acquisition time and enhance image quality","title":"Deep learning-accelerated image reconstruction in MRI of the orbit to shorten acquisition time and enhance image quality"}],"person":[{"display":"Estler, Arne","roleDisplay":"VerfasserIn","role":"aut","family":"Estler","given":"Arne"},{"roleDisplay":"VerfasserIn","display":"Zerweck, Leonie","role":"aut","family":"Zerweck","given":"Leonie"},{"family":"Brunnée","given":"Merle","display":"Brunnée, Merle","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Estler, Bent","roleDisplay":"VerfasserIn","given":"Bent","family":"Estler"},{"roleDisplay":"VerfasserIn","display":"Richter, Vivien","role":"aut","family":"Richter","given":"Vivien"},{"given":"Anja","family":"Örgel","role":"aut","roleDisplay":"VerfasserIn","display":"Örgel, Anja"},{"display":"Bürkle, Eva","roleDisplay":"VerfasserIn","role":"aut","family":"Bürkle","given":"Eva"},{"display":"Becker, Hannes","roleDisplay":"VerfasserIn","role":"aut","family":"Becker","given":"Hannes"},{"given":"Helene","family":"Hurth","role":"aut","roleDisplay":"VerfasserIn","display":"Hurth, Helene"},{"family":"Stahl","given":"Stéphane","roleDisplay":"VerfasserIn","display":"Stahl, Stéphane","role":"aut"},{"family":"Konrad","given":"Eva-Maria","roleDisplay":"VerfasserIn","display":"Konrad, Eva-Maria","role":"aut"},{"role":"aut","display":"Kelbsch, Carina","roleDisplay":"VerfasserIn","given":"Carina","family":"Kelbsch"},{"given":"Ulrike","family":"Ernemann","role":"aut","display":"Ernemann, Ulrike","roleDisplay":"VerfasserIn"},{"given":"Till-Karsten","family":"Hauser","role":"aut","roleDisplay":"VerfasserIn","display":"Hauser, Till-Karsten"},{"family":"Gohla","given":"Georg","roleDisplay":"VerfasserIn","display":"Gohla, Georg","role":"aut"}],"language":["eng"],"recId":"1891018345","note":["Gesehen am 10.06.2024"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a ESTLERARNEDEEPLEARNI2024