Validity, reliability, and significance: empirical methods for NLP and data science

Preface -- Acknowledgments -- Introduction -- Validity -- Reliability -- Significance -- Worked-Through Example: Analyzing Inferential Reproducibility -- Bibliography.

Saved in:
Bibliographic Details
Main Authors: Riezler, Stefan (Author) , Hagmann, Michael (Author)
Format: Book/Monograph
Language:English
Published: Cham Springer Nature Switzerland 2024
Cham Imprint: Springer 2024
Edition:2nd ed. 2024
Series:Synthesis Lectures on Human Language Technologies
DOI:10.1007/978-3-031-57065-0
Online Access:Resolving-System, lizenzpflichtig: https://doi.org/10.1007/978-3-031-57065-0
Get full text
Author Notes:by Stefan Riezler, Michael Hagmann

MARC

LEADER 00000cam a2200000 c 4500
001 1891055852
003 DE-627
005 20250307180420.0
007 cr uuu---uuuuu
008 240611s2024 sz |||||o 00| ||eng c
020 |a 9783031570650  |9 978-3-031-57065-0 
024 7 |a 10.1007/978-3-031-57065-0  |2 doi 
035 |a (DE-627)1891055852 
035 |a (DE-599)KEP103912525 
035 |a (DE-He213)978-3-031-57065-0 
035 |a (DE-627-1)103912525 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-CH 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 |a 006.3  |2 23 
084 |a 28  |2 sdnb 
100 1 |a Riezler, Stefan  |e VerfasserIn  |0 (DE-588)1033925454  |0 (DE-627)743677528  |0 (DE-576)381607615  |4 aut 
245 1 0 |a Validity, reliability, and significance  |b empirical methods for NLP and data science  |c by Stefan Riezler, Michael Hagmann 
250 |a 2nd ed. 2024 
264 1 |a Cham  |b Springer Nature Switzerland  |c 2024 
264 1 |a Cham  |b Imprint: Springer  |c 2024 
300 |a 1 Online-Ressource (XVII, 168 p. 70 illus., 61 illus. in color.) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Synthesis Lectures on Human Language Technologies 
520 |a Preface -- Acknowledgments -- Introduction -- Validity -- Reliability -- Significance -- Worked-Through Example: Analyzing Inferential Reproducibility -- Bibliography. 
520 |a This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments. The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications. 
650 0 |a Machine learning. 
650 0 |a Computer science 
650 0 |a Mathematical statistics. 
650 0 |a Experimental design. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Artificial intelligence 
650 4 |a COM094000 
650 4 |a COMPUTERS / Database Management / General 
650 4 |a COMPUTERS / Natural Language Processing 
650 4 |a Databases 
650 4 |a Datenbanken 
650 4 |a MATHEMATICS / Discrete Mathematics 
650 4 |a MATHEMATICS / Probability & Statistics / General 
650 4 |a Machine learning 
650 4 |a Maschinelles Lernen 
650 4 |a Mathematik für Informatiker 
650 4 |a Maths for computer scientists 
650 4 |a Natural language & machine translation 
650 4 |a Natürliche Sprachen und maschinelle Übersetzung 
650 4 |a Probability & statistics 
650 4 |a Wahrscheinlichkeitsrechnung und Statistik 
700 1 |a Hagmann, Michael  |d 1981-  |e VerfasserIn  |0 (DE-588)1193940567  |0 (DE-627)1675686564  |4 aut 
776 1 |z 9783031570643 
776 1 |z 9783031570667 
776 1 |z 9783031570674 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |a Riezler, Stefan  |t Validity, reliability, and significance  |b Second edition  |d Cham : Springer, 2024  |h xvii, 168 Seiten  |w (DE-627)1891395548  |z 9783031570643 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9783031570667 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9783031570674 
856 4 0 |u https://doi.org/10.1007/978-3-031-57065-0  |m X:SPRINGER  |x Resolving-System  |z lizenzpflichtig 
912 |a ZDB-2-SEB  |b 2024 
912 |a ZDB-2-SXSC  |b 2024 
951 |a BO 
992 |a 20250114 
993 |a Book 
994 |a 2024 
998 |g 1193940567  |a Hagmann, Michael  |m 1193940567:Hagmann, Michael  |d 700000  |d 728500  |e 700000PH1193940567  |e 728500PH1193940567  |k 0/700000/  |k 1/700000/728500/  |p 2  |y j 
998 |g 1033925454  |a Riezler, Stefan  |m 1033925454:Riezler, Stefan  |d 90000  |d 90500  |e 90000PR1033925454  |e 90500PR1033925454  |k 0/90000/  |k 1/90000/90500/  |p 1  |x j 
999 |a KXP-PPN1891055852  |e 4651008917 
BIB |a Y 
JSO |a {"language":["eng"],"recId":"1891055852","physDesc":[{"extent":"1 Online-Ressource (XVII, 168 p. 70 illus., 61 illus. in color.)"}],"type":{"media":"Online-Ressource","bibl":"book"},"id":{"doi":["10.1007/978-3-031-57065-0"],"eki":["1891055852"],"isbn":["9783031570650"]},"origin":[{"dateIssuedDisp":"2024","publisher":"Springer Nature Switzerland ; Imprint: Springer","edition":"2nd ed. 2024","publisherPlace":"Cham ; Cham","editionNo":2,"dateIssuedKey":"2024"}],"title":[{"title_sort":"Validity, reliability, and significance","subtitle":"empirical methods for NLP and data science","title":"Validity, reliability, and significance"}],"person":[{"given":"Stefan","family":"Riezler","role":"aut","roleDisplay":"VerfasserIn","display":"Riezler, Stefan"},{"given":"Michael","family":"Hagmann","role":"aut","roleDisplay":"VerfasserIn","display":"Hagmann, Michael"}],"name":{"displayForm":["by Stefan Riezler, Michael Hagmann"]}} 
SRT |a RIEZLERSTEVALIDITYRE2024