Training of a deep learning based digital subtraction angiography method using synthetic data

Background Digital subtraction angiography (DSA) is a fluoroscopy method primarily used for the diagnosis of cardiovascular diseases (CVDs). Deep learning-based DSA (DDSA) is developed to extract DSA-like images directly from fluoroscopic images, which helps in saving dose while improving image qual...

Full description

Saved in:
Bibliographic Details
Main Authors: Duan, Lizhen (Author) , Eulig, Elias (Author) , Knaup, Michael (Author) , Adamus, Ralf (Author) , Lell, Michael (Author) , Kachelrieß, Marc (Author)
Format: Article (Journal)
Language:English
Published: 14 February 2024
In: Medical physics
Year: 2024, Volume: 51, Issue: 7, Pages: 4793-4810
ISSN:2473-4209
DOI:10.1002/mp.16973
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/mp.16973
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.16973
Get full text
Author Notes:Lizhen Duan, Elias Eulig, Michael Knaup, Ralf Adamus, Michael Lell, Marc Kachelrieß

MARC

LEADER 00000caa a22000002c 4500
001 1891366513
003 DE-627
005 20250915085829.0
007 cr uuu---uuuuu
008 240617s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/mp.16973  |2 doi 
035 |a (DE-627)1891366513 
035 |a (DE-599)KXP1891366513 
035 |a (OCoLC)1475299813 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Duan, Lizhen  |e VerfasserIn  |0 (DE-588)1333251734  |0 (DE-627)1891366793  |4 aut 
245 1 0 |a Training of a deep learning based digital subtraction angiography method using synthetic data  |c Lizhen Duan, Elias Eulig, Michael Knaup, Ralf Adamus, Michael Lell, Marc Kachelrieß 
264 1 |c 14 February 2024 
300 |b Illustrationen 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 17.06.2024 
520 |a Background Digital subtraction angiography (DSA) is a fluoroscopy method primarily used for the diagnosis of cardiovascular diseases (CVDs). Deep learning-based DSA (DDSA) is developed to extract DSA-like images directly from fluoroscopic images, which helps in saving dose while improving image quality. It can also be applied where C-arm or patient motion is present and conventional DSA cannot be applied. However, due to the lack of clinical training data and unavoidable artifacts in DSA targets, current DDSA models still cannot satisfactorily display specific structures, nor can they predict noise-free images. Purpose In this study, we propose a strategy for producing abundant synthetic DSA image pairs in which synthetic DSA targets are free of typical artifacts and noise commonly found in conventional DSA targets for DDSA model training. Methods More than 7,000 forward-projected computed tomography (CT) images and more than 25,000 synthetic vascular projection images were employed to create contrast-enhanced fluoroscopic images and corresponding DSA images, which were utilized as DSA image pairs for training of the DDSA networks. The CT projection images and vascular projection images were generated from eight whole-body CT scans and 1,584 3D vascular skeletons, respectively. All vessel skeletons were generated with stochastic Lindenmayer systems. We trained DDSA models on this synthetic dataset and compared them to the trainings on a clinical DSA dataset, which contains nearly 4,000 fluoroscopic x-ray images obtained from different models of C-arms. Results We evaluated DDSA models on clinical fluoroscopic data of different anatomies, including the leg, abdomen, and heart. The results on leg data showed for different methods that training on synthetic data performed similarly and sometimes outperformed training on clinical data. The results on abdomen and cardiac data demonstrated that models trained on synthetic data were able to extract clearer DSA-like images than conventional DSA and models trained on clinical data. The models trained on synthetic data consistently outperformed their clinical data counterparts, achieving higher scores in the quantitative evaluation of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) metrics for DDSA images, as well as accuracy, precision, and Dice scores for segmentation of the DDSA images. Conclusions We proposed an approach to train DDSA networks with synthetic DSA image pairs and extract DSA-like images from contrast-enhanced x-ray images directly. This is a potential tool to aid in diagnosis. 
650 4 |a deep learning 
650 4 |a digital subtraction angiography 
650 4 |a fluoroscopy 
650 4 |a synthetic training data 
700 1 |a Eulig, Elias  |d 1995-  |e VerfasserIn  |0 (DE-588)1191843181  |0 (DE-627)1670315185  |4 aut 
700 1 |a Knaup, Michael  |d 1969-  |e VerfasserIn  |0 (DE-588)124137857  |0 (DE-627)085662232  |0 (DE-576)29403546X  |4 aut 
700 1 |a Adamus, Ralf  |e VerfasserIn  |4 aut 
700 1 |a Lell, Michael  |d 1969-  |e VerfasserIn  |0 (DE-588)120523663  |0 (DE-627)696750740  |0 (DE-576)292262051  |4 aut 
700 1 |a Kachelrieß, Marc  |d 1969-  |e VerfasserIn  |0 (DE-588)120866544  |0 (DE-627)705049280  |0 (DE-576)292422725  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 51(2024), 7, Seite 4793-4810  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a Training of a deep learning based digital subtraction angiography method using synthetic data 
773 1 8 |g volume:51  |g year:2024  |g number:7  |g pages:4793-4810  |g extent:18  |a Training of a deep learning based digital subtraction angiography method using synthetic data 
856 4 0 |u https://doi.org/10.1002/mp.16973  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.16973  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240617 
993 |a Article 
994 |a 2024 
998 |g 120866544  |a Kachelrieß, Marc  |m 120866544:Kachelrieß, Marc  |d 50000  |e 50000PK120866544  |k 0/50000/  |p 6  |y j 
998 |g 1191843181  |a Eulig, Elias  |m 1191843181:Eulig, Elias  |d 130000  |e 130000PE1191843181  |k 0/130000/  |p 2 
998 |g 1333251734  |a Duan, Lizhen  |m 1333251734:Duan, Lizhen  |d 130000  |e 130000PD1333251734  |k 0/130000/  |p 1  |x j 
999 |a KXP-PPN1891366513  |e 4539517465 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 17.06.2024"],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"14 February 2024"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Training of a deep learning based digital subtraction angiography method using synthetic data","title_sort":"Training of a deep learning based digital subtraction angiography method using synthetic data"}],"language":["eng"],"person":[{"display":"Duan, Lizhen","family":"Duan","role":"aut","given":"Lizhen"},{"role":"aut","given":"Elias","family":"Eulig","display":"Eulig, Elias"},{"role":"aut","given":"Michael","display":"Knaup, Michael","family":"Knaup"},{"given":"Ralf","role":"aut","family":"Adamus","display":"Adamus, Ralf"},{"given":"Michael","role":"aut","display":"Lell, Michael","family":"Lell"},{"family":"Kachelrieß","display":"Kachelrieß, Marc","role":"aut","given":"Marc"}],"id":{"doi":["10.1002/mp.16973"],"eki":["1891366513"]},"relHost":[{"disp":"Training of a deep learning based digital subtraction angiography method using synthetic dataMedical physics","part":{"issue":"7","volume":"51","extent":"18","pages":"4793-4810","text":"51(2024), 7, Seite 4793-4810","year":"2024"},"note":["Gesehen am 01.08.2025"],"origin":[{"publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY","dateIssuedDisp":"1974-","publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]","dateIssuedKey":"1974"}],"title":[{"title_sort":"Medical physics","title":"Medical physics"}],"titleAlt":[{"title":"Medical physics online"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]},"recId":"265784867","pubHistory":["1.1974 -"],"id":{"issn":["2473-4209","1522-8541"],"eki":["265784867"],"zdb":["1466421-5"]}}],"physDesc":[{"extent":"18 S.","noteIll":"Illustrationen"}],"name":{"displayForm":["Lizhen Duan, Elias Eulig, Michael Knaup, Ralf Adamus, Michael Lell, Marc Kachelrieß"]},"recId":"1891366513"} 
SRT |a DUANLIZHENTRAININGOF1420