Validity, reliability, and significance: empirical methods for NLP and data science

This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Riezler, Stefan (VerfasserIn) , Hagmann, Michael (VerfasserIn)
Dokumenttyp: Buch/Monographie
Sprache:Englisch
Veröffentlicht: Cham Springer [2024]
Ausgabe:Second edition
Schriftenreihe:Synthesis Lectures on Human Language Technologies
Online-Zugang:Verlag, Cover: https://www.dietmardreier.de/annot/564C42696D677C7C393738333033313537303634337C7C434F50.jpg?sq=2
Volltext
Verfasserangaben:Stefan Riezler, Michael Hagmann

MARC

LEADER 00000cam a2200000 c 4500
001 1891395548
003 DE-627
005 20241110000656.0
007 tu
008 240617s2024 sz ||||| 00| ||eng c
020 |a 9783031570643  |c Gebunden : EUR 41,60  |9 978-3-031-57064-3 
035 |a (DE-627)1891395548 
035 |a (DE-599)KXP1891395548 
035 |a (OCoLC)1439830503 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-CH 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 |a 006.31 
084 |a 28  |2 sdnb 
100 1 |a Riezler, Stefan  |e VerfasserIn  |0 (DE-588)1033925454  |0 (DE-627)743677528  |0 (DE-576)381607615  |4 aut 
245 1 0 |a Validity, reliability, and significance  |b empirical methods for NLP and data science  |c Stefan Riezler, Michael Hagmann 
250 |a Second edition 
264 1 |a Cham  |b Springer  |c [2024] 
264 4 |c © 2024 
300 |a xvii, 168 Seiten  |b Illustrationen, Diagramme 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
490 0 |a Synthesis Lectures on Human Language Technologies 
505 8 |a Preface.- Acknowledgments.- Introduction.- Validity.- Reliability.- Significance.- Worked-Through Example: Analyzing Inferential Reproducibility.- Bibliography. 
520 |a This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments. The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications 
650 4 |a COM094000 
650 4 |a COMPUTERS / Database Management / General 
650 4 |a COMPUTERS / Natural Language Processing 
650 4 |a Databases 
650 4 |a Datenbanken 
650 4 |a MATHEMATICS / Discrete Mathematics 
650 4 |a MATHEMATICS / Probability & Statistics / General 
650 4 |a Machine learning 
650 4 |a Maschinelles Lernen 
650 4 |a Mathematik für Informatiker 
650 4 |a Maths for computer scientists 
650 4 |a Natural language & machine translation 
650 4 |a Natürliche Sprachen und maschinelle Übersetzung 
650 4 |a Probability & statistics 
650 4 |a Wahrscheinlichkeitsrechnung und Statistik 
700 1 |a Hagmann, Michael  |d 1981-  |e VerfasserIn  |0 (DE-588)1193940567  |0 (DE-627)1675686564  |4 aut 
776 1 |z 9783031570650  |c eBook 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |a Riezler, Stefan  |t Validity, reliability, and significance  |b 2nd ed. 2024  |d Cham : Springer Nature Switzerland, 2024  |h 1 Online-Ressource (XVII, 168 p. 70 illus., 61 illus. in color.)  |w (DE-627)1891055852  |z 9783031570650 
856 4 2 |u https://www.dietmardreier.de/annot/564C42696D677C7C393738333033313537303634337C7C434F50.jpg?sq=2  |x Verlag  |3 Cover 
951 |a BO 
992 |a 20250114 
993 |a Book 
998 |g 1193940567  |a Hagmann, Michael  |m 1193940567:Hagmann, Michael  |d 700000  |d 728500  |e 700000PH1193940567  |e 728500PH1193940567  |k 0/700000/  |k 1/700000/728500/  |p 2  |y j 
998 |g 1033925454  |a Riezler, Stefan  |m 1033925454:Riezler, Stefan  |d 90000  |d 90500  |e 90000PR1033925454  |e 90500PR1033925454  |k 0/90000/  |k 1/90000/90500/  |p 1  |x j 
999 |a KXP-PPN1891395548  |e 4651008712 
BIB |a Y 
JSO |a {"title":[{"title":"Validity, reliability, and significance","title_sort":"Validity, reliability, and significance","subtitle":"empirical methods for NLP and data science"}],"origin":[{"dateIssuedKey":"2024","publisher":"Springer","dateIssuedDisp":"[2024]","edition":"Second edition","editionNo":2,"publisherPlace":"Cham"}],"person":[{"family":"Riezler","display":"Riezler, Stefan","given":"Stefan","role":"aut"},{"given":"Michael","role":"aut","family":"Hagmann","display":"Hagmann, Michael"}],"type":{"bibl":"book"},"physDesc":[{"noteIll":"Illustrationen, Diagramme","extent":"xvii, 168 Seiten"}],"language":["eng"],"name":{"displayForm":["Stefan Riezler, Michael Hagmann"]},"recId":"1891395548","id":{"isbn":["9783031570643"],"eki":["1891395548"]}} 
SRT |a RIEZLERSTEVALIDITYRE2024