Deep learning in cancer genomics and histopathology

Histopathology and genomic profiling are cornerstones of precision oncology and are routinely obtained for patients with cancer. Traditionally, histopathology slides are manually reviewed by highly trained pathologists. Genomic data, on the other hand, is evaluated by engineered computational pipeli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Unger, Michaela (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 March 2024
In: Genome medicine
Year: 2024, Jahrgang: 16, Pages: 1-14
ISSN:1756-994X
DOI:10.1186/s13073-024-01315-6
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1186/s13073-024-01315-6
Volltext
Verfasserangaben:Michaela Unger and Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 1891549405
003 DE-627
005 20241205143234.0
007 cr uuu---uuuuu
008 240619s2024 xx |||||o 00| ||eng c
024 7 |a 10.1186/s13073-024-01315-6  |2 doi 
035 |a (DE-627)1891549405 
035 |a (DE-599)KXP1891549405 
035 |a (OCoLC)1475300007 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Unger, Michaela  |e VerfasserIn  |0 (DE-588)1333472730  |0 (DE-627)189155073X  |4 aut 
245 1 0 |a Deep learning in cancer genomics and histopathology  |c Michaela Unger and Jakob Nikolas Kather 
264 1 |c 27 March 2024 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 19.06.2024 
520 |a Histopathology and genomic profiling are cornerstones of precision oncology and are routinely obtained for patients with cancer. Traditionally, histopathology slides are manually reviewed by highly trained pathologists. Genomic data, on the other hand, is evaluated by engineered computational pipelines. In both applications, the advent of modern artificial intelligence methods, specifically machine learning (ML) and deep learning (DL), have opened up a fundamentally new way of extracting actionable insights from raw data, which could augment and potentially replace some aspects of traditional evaluation workflows. In this review, we summarize current and emerging applications of DL in histopathology and genomics, including basic diagnostic as well as advanced prognostic tasks. Based on a growing body of evidence, we suggest that DL could be the groundwork for a new kind of workflow in oncology and cancer research. However, we also point out that DL models can have biases and other flaws that users in healthcare and research need to know about, and we propose ways to address them. 
650 4 |a Deep learning 
650 4 |a Genomics 
650 4 |a Histopathology 
650 4 |a Multimodality 
650 4 |a Precision oncology 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t Genome medicine  |d London : BioMed Central, 2009  |g 16(2024), Artikel-ID 44, Seite 1-14  |h Online-Ressource  |w (DE-627)594424275  |w (DE-600)2484394-5  |w (DE-576)304547956  |x 1756-994X  |7 nnas  |a Deep learning in cancer genomics and histopathology 
773 1 8 |g volume:16  |g year:2024  |g elocationid:44  |g pages:1-14  |g extent:14  |a Deep learning in cancer genomics and histopathology 
856 4 0 |u https://doi.org/10.1186/s13073-024-01315-6  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240619 
993 |a Article 
994 |a 2024 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 2  |y j 
999 |a KXP-PPN1891549405  |e 4540031899 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"disp":"Deep learning in cancer genomics and histopathologyGenome medicine","physDesc":[{"extent":"Online-Ressource"}],"recId":"594424275","note":["Gesehen am 28.09.2018"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"pages":"1-14","year":"2024","volume":"16","text":"16(2024), Artikel-ID 44, Seite 1-14","extent":"14"},"title":[{"title_sort":"Genome medicine","title":"Genome medicine"}],"id":{"eki":["594424275"],"issn":["1756-994X"],"zdb":["2484394-5"]},"pubHistory":["1.2009 -"],"origin":[{"publisher":"BioMed Central","dateIssuedKey":"2009","dateIssuedDisp":"2009-","publisherPlace":"London"}]}],"person":[{"display":"Unger, Michaela","family":"Unger","role":"aut","given":"Michaela"},{"display":"Kather, Jakob Nikolas","family":"Kather","role":"aut","given":"Jakob Nikolas"}],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"27 March 2024"}],"note":["Gesehen am 19.06.2024"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Deep learning in cancer genomics and histopathology","title":"Deep learning in cancer genomics and histopathology"}],"physDesc":[{"noteIll":"Illustrationen","extent":"14 S."}],"recId":"1891549405","name":{"displayForm":["Michaela Unger and Jakob Nikolas Kather"]},"id":{"doi":["10.1186/s13073-024-01315-6"],"eki":["1891549405"]}} 
SRT |a UNGERMICHADEEPLEARNI2720