Global quench dynamics and the growth of entanglement entropy in disordered spin chains with tunable range interactions

The nonequilibrium dynamics of disordered many-body quantum systems after a quantum quench unveils important insights about the competition between interactions and disorder, yielding, in particular, an interesting perspective toward the understanding of many-body localization. Still, the experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mohdeb, Youcef (VerfasserIn) , Vahedi, Javad (VerfasserIn) , Bhatt, R. N. (VerfasserIn) , Haas, S. (VerfasserIn) , Kettemann, S. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 18 October 2023
In: Physical review
Year: 2023, Jahrgang: 108, Heft: 14, Pages: 1-5
ISSN:2469-9969
DOI:10.1103/PhysRevB.108.L140203
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.108.L140203
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.108.L140203
Volltext
Verfasserangaben:Y. Mohdeb, J. Vahedi, R.N. Bhatt, S. Haas, and S. Kettemann
Beschreibung
Zusammenfassung:The nonequilibrium dynamics of disordered many-body quantum systems after a quantum quench unveils important insights about the competition between interactions and disorder, yielding, in particular, an interesting perspective toward the understanding of many-body localization. Still, the experimentally relevant effect of bond randomness in long-range interacting spin chains on their dynamical properties have so far not been investigated. In this Letter, we examine the entanglement entropy growth after a global quench in a quantum spin chain with randomly placed spins and long-range tunable interactions decaying with distance with power 𝛼. Using a dynamical version of the strong disorder renormalization group we find for 𝛼>𝛼𝑐 that the entanglement entropy grows logarithmically with time and becomes smaller with larger 𝛼 as 𝑆⁡(𝑡)=𝑆𝑝⁡ln⁡(𝑡)/(2⁢𝛼). Here, 𝑆𝑝=2⁢ln⁡2−1. We present results of numerical exact diagonalization calculations for system sizes up to 𝑁∼16 spins, in good agreement with the analytical results for sufficiently large 𝛼>𝛼𝑐≈1.8. For 𝛼<𝛼𝑐, we find that the entanglement entropy grows as a power law with time, 𝑆⁡(𝑡)∼𝑡𝛾⁡(𝛼) with 0<𝛾⁡(𝛼)<1 a decaying function of the interaction exponent 𝛼.
Beschreibung:Gesehen am 21.06.2024
Beschreibung:Online Resource
ISSN:2469-9969
DOI:10.1103/PhysRevB.108.L140203