Machine learning facial emotion classifiers in psychotherapy research: a proof-of-concept study

Background: New advances in the field of machine learning make it possible to track facial emotional expression with high resolution, including micro-expressions. These advances have promising applications for psychotherapy research, since manual coding (e.g., the Facial Action Coding System), is ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Steppan, Martin (VerfasserIn) , Zimmermann, Ronan (VerfasserIn) , Fürer, Lukas (VerfasserIn) , Southward, Matthew (VerfasserIn) , Koenig, Julian (VerfasserIn) , Kaess, Michael (VerfasserIn) , Kleinbub, Johann R. (VerfasserIn) , Roth, Volker (VerfasserIn) , Schmeck, Klaus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: November 27, 2023
In: Psychopathology
Year: 2023, Jahrgang: 57, Heft: 3, Pages: 159-168
ISSN:1423-033X
DOI:10.1159/000534811
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1159/000534811
Volltext
Verfasserangaben:Martin Steppan, Ronan Zimmermann, Lukas Fürer, Matthew Southward, Julian Koenig, Michael Kaess, Johann Roland Kleinbub, Volker Roth, Klaus Schmeck

MARC

LEADER 00000caa a2200000 c 4500
001 1892356600
003 DE-627
005 20241205144839.0
007 cr uuu---uuuuu
008 240627s2023 xx |||||o 00| ||eng c
024 7 |a 10.1159/000534811  |2 doi 
035 |a (DE-627)1892356600 
035 |a (DE-599)KXP1892356600 
035 |a (OCoLC)1475300962 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 11  |2 sdnb 
100 1 |a Steppan, Martin  |e VerfasserIn  |0 (DE-588)1012609839  |0 (DE-627)704889668  |0 (DE-576)345687981  |4 aut 
245 1 0 |a Machine learning facial emotion classifiers in psychotherapy research  |b a proof-of-concept study  |c Martin Steppan, Ronan Zimmermann, Lukas Fürer, Matthew Southward, Julian Koenig, Michael Kaess, Johann Roland Kleinbub, Volker Roth, Klaus Schmeck 
264 1 |c November 27, 2023 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.06.2024 
520 |a Background: New advances in the field of machine learning make it possible to track facial emotional expression with high resolution, including micro-expressions. These advances have promising applications for psychotherapy research, since manual coding (e.g., the Facial Action Coding System), is time-consuming. Purpose: We tested whether this technology can reliably identify in-session emotional expression in a naturalistic treatment setting, and how these measures relate to the outcome of psychotherapy. Method: We applied a machine learning emotion classifier to video material from 389 psychotherapy sessions of 23 patients with borderline personality pathology. We validated the findings with human ratings according to the Clients Emotional Arousal Scale (CEAS) and explored associations with treatment outcomes. Results: Overall, machine learning ratings showed significant agreement with human ratings. Machine learning emotion classifiers, particularly the display of positive emotions (smiling and happiness), showed medium effect size on median-split treatment outcome (d = 0.3) as well as continuous improvement (r = 0.49, p < 0.05). Patients who dropped out form psychotherapy, showed significantly more neutral expressions, and generally less social smiling, particularly at the beginning of psychotherapeutic sessions. Conclusions: Machine learning classifiers are a highly promising resource for research in psychotherapy. The results highlight differential associations of displayed positive and negative feelings with treatment outcomes. Machine learning emotion recognition may be used for the early identification of drop-out risks and clinically relevant interactions in psychotherapy. 
700 1 |a Zimmermann, Ronan  |e VerfasserIn  |0 (DE-588)1238930298  |0 (DE-627)1766795811  |4 aut 
700 1 |a Fürer, Lukas  |d 1990-  |e VerfasserIn  |0 (DE-588)1236610989  |0 (DE-627)1762018551  |4 aut 
700 1 |a Southward, Matthew  |e VerfasserIn  |4 aut 
700 1 |a Koenig, Julian  |d 1985-  |e VerfasserIn  |0 (DE-588)1031388052  |0 (DE-627)736334459  |0 (DE-576)378827227  |4 aut 
700 1 |a Kaess, Michael  |d 1979-  |e VerfasserIn  |0 (DE-588)136367240  |0 (DE-627)694324248  |0 (DE-576)300984766  |4 aut 
700 1 |a Kleinbub, Johann R.  |e VerfasserIn  |0 (DE-588)1214668127  |0 (DE-627)1725680904  |4 aut 
700 1 |a Roth, Volker  |e VerfasserIn  |0 (DE-588)1140751964  |0 (DE-627)89866604X  |0 (DE-576)494025239  |4 aut 
700 1 |a Schmeck, Klaus  |d 1956-  |e VerfasserIn  |0 (DE-588)138296499  |0 (DE-627)600738191  |0 (DE-576)170859703  |4 aut 
773 0 8 |i Enthalten in  |t Psychopathology  |d Basel : Karger, 1984  |g 57(2023), 3, Seite 159-168  |h Online-Ressource  |w (DE-627)300897715  |w (DE-600)1483565-4  |w (DE-576)112815162  |x 1423-033X  |7 nnas  |a Machine learning facial emotion classifiers in psychotherapy research a proof-of-concept study 
773 1 8 |g volume:57  |g year:2023  |g number:3  |g pages:159-168  |g extent:10  |a Machine learning facial emotion classifiers in psychotherapy research a proof-of-concept study 
856 4 0 |u https://doi.org/10.1159/000534811  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240627 
993 |a Article 
994 |a 2023 
998 |g 136367240  |a Kaess, Michael  |m 136367240:Kaess, Michael  |d 910000  |d 910600  |e 910000PK136367240  |e 910600PK136367240  |k 0/910000/  |k 1/910000/910600/  |p 6 
998 |g 1031388052  |a Koenig, Julian  |m 1031388052:Koenig, Julian  |d 50000  |e 50000PK1031388052  |k 0/50000/  |p 5 
999 |a KXP-PPN1892356600  |e 4542630773 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"note":["Gesehen am 27.06.2024"],"relHost":[{"title":[{"title":"Psychopathology","subtitle":"international journal of descriptive and experimental psychopathology, phenomenology and clinical diagnostics","title_sort":"Psychopathology"}],"titleAlt":[{"title":"international journal of descriptive psychopathology, phenomenology and clinical diagnostics"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"volume":"57","text":"57(2023), 3, Seite 159-168","extent":"10","issue":"3","year":"2023","pages":"159-168"},"pubHistory":["Volume 17, issue 1 (1984)-"],"id":{"issn":["1423-033X"],"zdb":["1483565-4"],"eki":["300897715"]},"recId":"300897715","disp":"Machine learning facial emotion classifiers in psychotherapy research a proof-of-concept studyPsychopathology","language":["eng"],"note":["Gesehen am 24.10.25"],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1984","publisher":"Karger","dateIssuedDisp":"1984-","publisherPlace":"Basel"}]}],"physDesc":[{"extent":"10 S."}],"origin":[{"dateIssuedDisp":"November 27, 2023","dateIssuedKey":"2023"}],"title":[{"subtitle":"a proof-of-concept study","title":"Machine learning facial emotion classifiers in psychotherapy research","title_sort":"Machine learning facial emotion classifiers in psychotherapy research"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"role":"aut","family":"Steppan","roleDisplay":"VerfasserIn","given":"Martin","display":"Steppan, Martin"},{"family":"Zimmermann","roleDisplay":"VerfasserIn","given":"Ronan","display":"Zimmermann, Ronan","role":"aut"},{"family":"Fürer","roleDisplay":"VerfasserIn","display":"Fürer, Lukas","given":"Lukas","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","given":"Matthew","display":"Southward, Matthew","family":"Southward"},{"role":"aut","display":"Koenig, Julian","roleDisplay":"VerfasserIn","given":"Julian","family":"Koenig"},{"role":"aut","family":"Kaess","display":"Kaess, Michael","roleDisplay":"VerfasserIn","given":"Michael"},{"given":"Johann R.","roleDisplay":"VerfasserIn","display":"Kleinbub, Johann R.","family":"Kleinbub","role":"aut"},{"family":"Roth","given":"Volker","roleDisplay":"VerfasserIn","display":"Roth, Volker","role":"aut"},{"display":"Schmeck, Klaus","roleDisplay":"VerfasserIn","given":"Klaus","family":"Schmeck","role":"aut"}],"name":{"displayForm":["Martin Steppan, Ronan Zimmermann, Lukas Fürer, Matthew Southward, Julian Koenig, Michael Kaess, Johann Roland Kleinbub, Volker Roth, Klaus Schmeck"]},"id":{"eki":["1892356600"],"doi":["10.1159/000534811"]},"recId":"1892356600"} 
SRT |a STEPPANMARMACHINELEA2720