Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence

Clinical research relies on high-quality patient data, however, obtaining big data sets is costly and access to existing data is often hindered by privacy and regulatory concerns. Synthetic data generation holds the promise of effectively bypassing these boundaries allowing for simplified data acces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eckardt, Jan-Niklas (VerfasserIn) , Hahn, Waldemar (VerfasserIn) , Röllig, Christoph (VerfasserIn) , Stasik, Sebastian (VerfasserIn) , Platzbecker, Uwe (VerfasserIn) , Müller-Tidow, Carsten (VerfasserIn) , Serve, Hubert (VerfasserIn) , Baldus, Claudia D. (VerfasserIn) , Schliemann, Christoph (VerfasserIn) , Schäfer-Eckart, Kerstin (VerfasserIn) , Hanoun, Maher (VerfasserIn) , Kaufmann, Martin (VerfasserIn) , Burchert, Andreas (VerfasserIn) , Thiede, Christian (VerfasserIn) , Schetelig, Johannes (VerfasserIn) , Sedlmayr, Martin (VerfasserIn) , Bornhäuser, Martin (VerfasserIn) , Wolfien, Markus (VerfasserIn) , Middeke, Jan Moritz (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 March 2024
In: npj digital medicine
Year: 2024, Jahrgang: 7, Pages: 1-11
ISSN:2398-6352
DOI:10.1038/s41746-024-01076-x
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41746-024-01076-x
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41746-024-01076-x
Volltext
Verfasserangaben:Jan-Niklas Eckardt, Waldemar Hahn, Christoph Röllig, Sebastian Stasik, Uwe Platzbecker, Carsten Müller-Tidow, Hubert Serve, Claudia D. Baldus, Christoph Schliemann, Kerstin Schäfer-Eckart, Maher Hanoun, Martin Kaufmann, Andreas Burchert, Christian Thiede, Johannes Schetelig, Martin Sedlmayr, Martin Bornhäuser, Markus Wolfien & Jan Moritz Middeke

MARC

LEADER 00000caa a2200000 c 4500
001 1892775271
003 DE-627
005 20250117233419.0
007 cr uuu---uuuuu
008 240701s2024 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41746-024-01076-x  |2 doi 
035 |a (DE-627)1892775271 
035 |a (DE-599)KXP1892775271 
035 |a (OCoLC)1475301026 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Eckardt, Jan-Niklas  |d 1991-  |e VerfasserIn  |0 (DE-588)1222283484  |0 (DE-627)1741296919  |4 aut 
245 1 0 |a Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence  |c Jan-Niklas Eckardt, Waldemar Hahn, Christoph Röllig, Sebastian Stasik, Uwe Platzbecker, Carsten Müller-Tidow, Hubert Serve, Claudia D. Baldus, Christoph Schliemann, Kerstin Schäfer-Eckart, Maher Hanoun, Martin Kaufmann, Andreas Burchert, Christian Thiede, Johannes Schetelig, Martin Sedlmayr, Martin Bornhäuser, Markus Wolfien & Jan Moritz Middeke 
264 1 |c 20 March 2024 
300 |b Illustrationen 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 01.07.2024 
520 |a Clinical research relies on high-quality patient data, however, obtaining big data sets is costly and access to existing data is often hindered by privacy and regulatory concerns. Synthetic data generation holds the promise of effectively bypassing these boundaries allowing for simplified data accessibility and the prospect of synthetic control cohorts. We employed two different methodologies of generative artificial intelligence - CTAB-GAN+ and normalizing flows (NFlow) - to synthesize patient data derived from 1606 patients with acute myeloid leukemia, a heterogeneous hematological malignancy, that were treated within four multicenter clinical trials. Both generative models accurately captured distributions of demographic, laboratory, molecular and cytogenetic variables, as well as patient outcomes yielding high performance scores regarding fidelity and usability of both synthetic cohorts (n = 1606 each). Survival analysis demonstrated close resemblance of survival curves between original and synthetic cohorts. Inter-variable relationships were preserved in univariable outcome analysis enabling explorative analysis in our synthetic data. Additionally, training sample privacy is safeguarded mitigating possible patient re-identification, which we quantified using Hamming distances. We provide not only a proof-of-concept for synthetic data generation in multimodal clinical data for rare diseases, but also full public access to synthetic data sets to foster further research. 
650 4 |a Acute myeloid leukaemia 
650 4 |a Clinical trials 
700 1 |a Hahn, Waldemar  |e VerfasserIn  |4 aut 
700 1 |a Röllig, Christoph  |e VerfasserIn  |4 aut 
700 1 |a Stasik, Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Platzbecker, Uwe  |e VerfasserIn  |4 aut 
700 1 |a Müller-Tidow, Carsten  |d 1968-  |e VerfasserIn  |0 (DE-588)1015101798  |0 (DE-627)705330230  |0 (DE-576)351197893  |4 aut 
700 1 |a Serve, Hubert  |e VerfasserIn  |4 aut 
700 1 |a Baldus, Claudia D.  |e VerfasserIn  |4 aut 
700 1 |8 1\p  |a Schliemann, Christoph  |d 1977-  |e VerfasserIn  |0 (DE-588)129938548  |0 (DE-627)484462792  |0 (DE-576)297912186  |4 aut 
700 1 |a Schäfer-Eckart, Kerstin  |e VerfasserIn  |4 aut 
700 1 |a Hanoun, Maher  |e VerfasserIn  |4 aut 
700 1 |a Kaufmann, Martin  |e VerfasserIn  |4 aut 
700 1 |a Burchert, Andreas  |e VerfasserIn  |4 aut 
700 1 |a Thiede, Christian  |e VerfasserIn  |4 aut 
700 1 |a Schetelig, Johannes  |e VerfasserIn  |4 aut 
700 1 |8 2\p  |a Sedlmayr, Martin  |d 1973-  |e VerfasserIn  |0 (DE-588)137279078  |0 (DE-627)591590220  |0 (DE-576)302894969  |4 aut 
700 1 |a Bornhäuser, Martin  |e VerfasserIn  |4 aut 
700 1 |a Wolfien, Markus  |e VerfasserIn  |4 aut 
700 1 |a Middeke, Jan Moritz  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t npj digital medicine  |d [Basingstoke] : Macmillan Publishers Limited, 2016  |g 7(2024), Artikel-ID 76, Seite 1-11  |h Online-Ressource  |w (DE-627)1016587104  |w (DE-600)2925182-5  |w (DE-576)501513582  |x 2398-6352  |7 nnas  |a Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence 
773 1 8 |g volume:7  |g year:2024  |g elocationid:76  |g pages:1-11  |g extent:11  |a Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence 
856 4 0 |u https://doi.org/10.1038/s41746-024-01076-x  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41746-024-01076-x  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20240701 
993 |a Article 
994 |a 2024 
998 |g 1015101798  |a Müller-Tidow, Carsten  |m 1015101798:Müller-Tidow, Carsten  |d 910000  |d 910100  |d 50000  |e 910000PM1015101798  |e 910100PM1015101798  |e 50000PM1015101798  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 6 
999 |a KXP-PPN1892775271  |e 4544560268 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedDisp":"20 March 2024","dateIssuedKey":"2024"}],"language":["eng"],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"publisher":"Macmillan Publishers Limited","dateIssuedDisp":"[2016]-","publisherPlace":"[Basingstoke]"}],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"text":"7(2024), Artikel-ID 76, Seite 1-11","volume":"7","year":"2024","extent":"11","pages":"1-11"},"note":["Gesehen am 06. September 2019"],"disp":"Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligencenpj digital medicine","title":[{"title":"npj digital medicine","title_sort":"npj digital medicine"}],"id":{"eki":["1016587104"],"zdb":["2925182-5"],"issn":["2398-6352"]},"recId":"1016587104","pubHistory":["2016-"]}],"name":{"displayForm":["Jan-Niklas Eckardt, Waldemar Hahn, Christoph Röllig, Sebastian Stasik, Uwe Platzbecker, Carsten Müller-Tidow, Hubert Serve, Claudia D. Baldus, Christoph Schliemann, Kerstin Schäfer-Eckart, Maher Hanoun, Martin Kaufmann, Andreas Burchert, Christian Thiede, Johannes Schetelig, Martin Sedlmayr, Martin Bornhäuser, Markus Wolfien & Jan Moritz Middeke"]},"person":[{"given":"Jan-Niklas","role":"aut","display":"Eckardt, Jan-Niklas","family":"Eckardt","roleDisplay":"VerfasserIn"},{"given":"Waldemar","display":"Hahn, Waldemar","role":"aut","family":"Hahn","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Röllig","given":"Christoph","display":"Röllig, Christoph","role":"aut"},{"family":"Stasik","roleDisplay":"VerfasserIn","given":"Sebastian","display":"Stasik, Sebastian","role":"aut"},{"display":"Platzbecker, Uwe","role":"aut","given":"Uwe","roleDisplay":"VerfasserIn","family":"Platzbecker"},{"given":"Carsten","role":"aut","display":"Müller-Tidow, Carsten","roleDisplay":"VerfasserIn","family":"Müller-Tidow"},{"given":"Hubert","display":"Serve, Hubert","role":"aut","roleDisplay":"VerfasserIn","family":"Serve"},{"roleDisplay":"VerfasserIn","family":"Baldus","role":"aut","display":"Baldus, Claudia D.","given":"Claudia D."},{"family":"Schliemann","roleDisplay":"VerfasserIn","role":"aut","display":"Schliemann, Christoph","given":"Christoph"},{"roleDisplay":"VerfasserIn","family":"Schäfer-Eckart","role":"aut","display":"Schäfer-Eckart, Kerstin","given":"Kerstin"},{"role":"aut","display":"Hanoun, Maher","given":"Maher","family":"Hanoun","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Kaufmann","display":"Kaufmann, Martin","role":"aut","given":"Martin"},{"roleDisplay":"VerfasserIn","family":"Burchert","role":"aut","display":"Burchert, Andreas","given":"Andreas"},{"roleDisplay":"VerfasserIn","family":"Thiede","given":"Christian","display":"Thiede, Christian","role":"aut"},{"roleDisplay":"VerfasserIn","family":"Schetelig","given":"Johannes","display":"Schetelig, Johannes","role":"aut"},{"display":"Sedlmayr, Martin","role":"aut","given":"Martin","roleDisplay":"VerfasserIn","family":"Sedlmayr"},{"roleDisplay":"VerfasserIn","family":"Bornhäuser","given":"Martin","display":"Bornhäuser, Martin","role":"aut"},{"role":"aut","display":"Wolfien, Markus","given":"Markus","family":"Wolfien","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Middeke","role":"aut","display":"Middeke, Jan Moritz","given":"Jan Moritz"}],"physDesc":[{"noteIll":"Illustrationen","extent":"11 S."}],"note":["Gesehen am 01.07.2024"],"recId":"1892775271","id":{"eki":["1892775271"],"doi":["10.1038/s41746-024-01076-x"]},"title":[{"title":"Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence","title_sort":"Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence"}]} 
SRT |a ECKARDTJANMIMICKINGC2020