ϕ4 lattice model with cubic symmetry in three dimensions: renormalization group flow and first-order phase transitions

We study the three-component 𝜙4 model on the simple cubic lattice in the presence of a cubic perturbation. To this end, we perform Monte Carlo simulations in conjunction with a finite-size scaling analysis of the data. The analysis of the renormalization group (RG) flow of a dimensionless quantity p...

Full description

Saved in:
Bibliographic Details
Main Author: Hasenbusch, Martin (Author)
Format: Article (Journal)
Language:English
Published: 15 February 2024
In: Physical review
Year: 2024, Volume: 109, Issue: 5, Pages: 054420-1-054420-19
ISSN:2469-9969
DOI:10.1103/PhysRevB.109.054420
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.109.054420
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.109.054420
Get full text
Author Notes:Martin Hasenbusch

MARC

LEADER 00000naa a2200000 c 4500
001 1893095991
003 DE-627
005 20240702101023.0
007 cr uuu---uuuuu
008 240702s2024 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevB.109.054420  |2 doi 
035 |a (DE-627)1893095991 
035 |a (DE-599)KXP1893095991 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Hasenbusch, Martin  |e VerfasserIn  |0 (DE-588)1198238046  |0 (DE-627)1680556584  |4 aut 
245 1 0 |a ϕ4 lattice model with cubic symmetry in three dimensions  |b renormalization group flow and first-order phase transitions  |c Martin Hasenbusch 
246 3 3 |a Phi 4 model with cubic symmetry in three dimensions 
264 1 |c 15 February 2024 
300 |b Diagramme 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel ist die Zahl 4 nach phi hochgestellt 
500 |a Gesehen am 02.07.2024 
520 |a We study the three-component 4 model on the simple cubic lattice in the presence of a cubic perturbation. To this end, we perform Monte Carlo simulations in conjunction with a finite-size scaling analysis of the data. The analysis of the renormalization group (RG) flow of a dimensionless quantity provides us with the accurate estimate 4−2=0.00081⁢(7) for the difference of the RG eigenvalue 4 at the O⁡(3)-symmetric fixed point and the correction exponent 2 at the cubic fixed point. We determine an effective exponent eff of the correlation length that depends on the strength of the breaking of the O⁡(3) symmetry. Field theory predicts that depending on the sign of the cubic perturbation, the RG flow is attracted by the cubic fixed point, or runs to an ever increasing amplitude, indicating a fluctuation-induced first-order phase transition. We demonstrate directly the first-order nature of the phase transition for a sufficiently strong breaking of the O(3) symmetry. We obtain accurate results for the latent heat, the correlation length in the disordered phase at the transition temperature, and the interface tension for interfaces between one of the ordered phases and the disordered phase. We study how these quantities scale with the RG flow, allowing quantitative predictions for weaker breaking of the symmetry. 
773 0 8 |i Enthalten in  |t Physical review  |d Woodbury, NY : Inst., 2016  |g 109(2024), 5 vom: Feb., Artikel-ID 054420, Seite 054420-1-054420-19  |h Online-Ressource  |w (DE-627)845696750  |w (DE-600)2844160-6  |w (DE-576)454495846  |x 2469-9969  |7 nnas  |a ϕ4 lattice model with cubic symmetry in three dimensions renormalization group flow and first-order phase transitions 
773 1 8 |g volume:109  |g year:2024  |g number:5  |g month:02  |g elocationid:054420  |g pages:054420-1-054420-19  |g extent:19  |a ϕ4 lattice model with cubic symmetry in three dimensions renormalization group flow and first-order phase transitions 
856 4 0 |u https://doi.org/10.1103/PhysRevB.109.054420  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevB.109.054420  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240702 
993 |a Article 
994 |a 2024 
998 |g 1198238046  |a Hasenbusch, Martin  |m 1198238046:Hasenbusch, Martin  |d 130000  |d 130300  |e 130000PH1198238046  |e 130300PH1198238046  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j  |y j 
999 |a KXP-PPN1893095991  |e 4544888565 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1893095991","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Im Titel ist die Zahl 4 nach phi hochgestellt","Gesehen am 02.07.2024"],"titleAlt":[{"title":"Phi 4 model with cubic symmetry in three dimensions"}],"person":[{"role":"aut","display":"Hasenbusch, Martin","roleDisplay":"VerfasserIn","given":"Martin","family":"Hasenbusch"}],"title":[{"title":"ϕ4 lattice model with cubic symmetry in three dimensions","subtitle":"renormalization group flow and first-order phase transitions","title_sort":"ϕ4 lattice model with cubic symmetry in three dimensions"}],"relHost":[{"pubHistory":["Vol. 93, Iss. 1, January 2016-"],"part":{"extent":"19","text":"109(2024), 5 vom: Feb., Artikel-ID 054420, Seite 054420-1-054420-19","volume":"109","pages":"054420-1-054420-19","issue":"5","year":"2024"},"titleAlt":[{"title":"Condensed matter and materials physics"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"ϕ4 lattice model with cubic symmetry in three dimensions renormalization group flow and first-order phase transitionsPhysical review","recId":"845696750","language":["eng"],"corporate":[{"display":"American Institute of Physics","roleDisplay":"Herausgebendes Organ","role":"isb"},{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"American Physical Society"}],"title":[{"title":"Physical review","title_sort":"Physical review"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Woodbury, NY","dateIssuedKey":"2016","publisher":"Inst.","dateIssuedDisp":"2016-"}],"id":{"issn":["2469-9969"],"eki":["845696750"],"zdb":["2844160-6"]},"name":{"displayForm":["publ. by The American Institute of Physics"]}}],"physDesc":[{"extent":"19 S.","noteIll":"Diagramme"}],"name":{"displayForm":["Martin Hasenbusch"]},"id":{"eki":["1893095991"],"doi":["10.1103/PhysRevB.109.054420"]},"origin":[{"dateIssuedDisp":"15 February 2024","dateIssuedKey":"2024"}]} 
SRT |a HASENBUSCH4LATTICEMO1520