ϕ4 lattice model with cubic symmetry in three dimensions: renormalization group flow and first-order phase transitions
We study the three-component 𝜙4 model on the simple cubic lattice in the presence of a cubic perturbation. To this end, we perform Monte Carlo simulations in conjunction with a finite-size scaling analysis of the data. The analysis of the renormalization group (RG) flow of a dimensionless quantity p...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
15 February 2024
|
| In: |
Physical review
Year: 2024, Volume: 109, Issue: 5, Pages: 054420-1-054420-19 |
| ISSN: | 2469-9969 |
| DOI: | 10.1103/PhysRevB.109.054420 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.109.054420 Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.109.054420 |
| Author Notes: | Martin Hasenbusch |
MARC
| LEADER | 00000naa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1893095991 | ||
| 003 | DE-627 | ||
| 005 | 20240702101023.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240702s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/PhysRevB.109.054420 |2 doi | |
| 035 | |a (DE-627)1893095991 | ||
| 035 | |a (DE-599)KXP1893095991 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Hasenbusch, Martin |e VerfasserIn |0 (DE-588)1198238046 |0 (DE-627)1680556584 |4 aut | |
| 245 | 1 | 0 | |a ϕ4 lattice model with cubic symmetry in three dimensions |b renormalization group flow and first-order phase transitions |c Martin Hasenbusch |
| 246 | 3 | 3 | |a Phi 4 model with cubic symmetry in three dimensions |
| 264 | 1 | |c 15 February 2024 | |
| 300 | |b Diagramme | ||
| 300 | |a 19 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Im Titel ist die Zahl 4 nach phi hochgestellt | ||
| 500 | |a Gesehen am 02.07.2024 | ||
| 520 | |a We study the three-component 4 model on the simple cubic lattice in the presence of a cubic perturbation. To this end, we perform Monte Carlo simulations in conjunction with a finite-size scaling analysis of the data. The analysis of the renormalization group (RG) flow of a dimensionless quantity provides us with the accurate estimate 4−2=0.00081(7) for the difference of the RG eigenvalue 4 at the O(3)-symmetric fixed point and the correction exponent 2 at the cubic fixed point. We determine an effective exponent eff of the correlation length that depends on the strength of the breaking of the O(3) symmetry. Field theory predicts that depending on the sign of the cubic perturbation, the RG flow is attracted by the cubic fixed point, or runs to an ever increasing amplitude, indicating a fluctuation-induced first-order phase transition. We demonstrate directly the first-order nature of the phase transition for a sufficiently strong breaking of the O(3) symmetry. We obtain accurate results for the latent heat, the correlation length in the disordered phase at the transition temperature, and the interface tension for interfaces between one of the ordered phases and the disordered phase. We study how these quantities scale with the RG flow, allowing quantitative predictions for weaker breaking of the symmetry. | ||
| 773 | 0 | 8 | |i Enthalten in |t Physical review |d Woodbury, NY : Inst., 2016 |g 109(2024), 5 vom: Feb., Artikel-ID 054420, Seite 054420-1-054420-19 |h Online-Ressource |w (DE-627)845696750 |w (DE-600)2844160-6 |w (DE-576)454495846 |x 2469-9969 |7 nnas |a ϕ4 lattice model with cubic symmetry in three dimensions renormalization group flow and first-order phase transitions |
| 773 | 1 | 8 | |g volume:109 |g year:2024 |g number:5 |g month:02 |g elocationid:054420 |g pages:054420-1-054420-19 |g extent:19 |a ϕ4 lattice model with cubic symmetry in three dimensions renormalization group flow and first-order phase transitions |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevB.109.054420 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://link.aps.org/doi/10.1103/PhysRevB.109.054420 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240702 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1198238046 |a Hasenbusch, Martin |m 1198238046:Hasenbusch, Martin |d 130000 |d 130300 |e 130000PH1198238046 |e 130300PH1198238046 |k 0/130000/ |k 1/130000/130300/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1893095991 |e 4544888565 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1893095991","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Im Titel ist die Zahl 4 nach phi hochgestellt","Gesehen am 02.07.2024"],"titleAlt":[{"title":"Phi 4 model with cubic symmetry in three dimensions"}],"person":[{"role":"aut","display":"Hasenbusch, Martin","roleDisplay":"VerfasserIn","given":"Martin","family":"Hasenbusch"}],"title":[{"title":"ϕ4 lattice model with cubic symmetry in three dimensions","subtitle":"renormalization group flow and first-order phase transitions","title_sort":"ϕ4 lattice model with cubic symmetry in three dimensions"}],"relHost":[{"pubHistory":["Vol. 93, Iss. 1, January 2016-"],"part":{"extent":"19","text":"109(2024), 5 vom: Feb., Artikel-ID 054420, Seite 054420-1-054420-19","volume":"109","pages":"054420-1-054420-19","issue":"5","year":"2024"},"titleAlt":[{"title":"Condensed matter and materials physics"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"ϕ4 lattice model with cubic symmetry in three dimensions renormalization group flow and first-order phase transitionsPhysical review","recId":"845696750","language":["eng"],"corporate":[{"display":"American Institute of Physics","roleDisplay":"Herausgebendes Organ","role":"isb"},{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"American Physical Society"}],"title":[{"title":"Physical review","title_sort":"Physical review"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Woodbury, NY","dateIssuedKey":"2016","publisher":"Inst.","dateIssuedDisp":"2016-"}],"id":{"issn":["2469-9969"],"eki":["845696750"],"zdb":["2844160-6"]},"name":{"displayForm":["publ. by The American Institute of Physics"]}}],"physDesc":[{"extent":"19 S.","noteIll":"Diagramme"}],"name":{"displayForm":["Martin Hasenbusch"]},"id":{"eki":["1893095991"],"doi":["10.1103/PhysRevB.109.054420"]},"origin":[{"dateIssuedDisp":"15 February 2024","dateIssuedKey":"2024"}]} | ||
| SRT | |a HASENBUSCH4LATTICEMO1520 | ||