Towards learned emulation of interannual water isotopologue variations in General Circulation Models

Simulating abundances of stable water isotopologues, that is, molecules differing in their isotopic composition, within climate models allows for comparisons with proxy data and, thus, for testing hypotheses about past climate and validating climate models under varying climatic conditions. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wider, Jonathan (VerfasserIn) , Kruse, Jakob (VerfasserIn) , Weitzel, Nils (VerfasserIn) , Bühler, Janica C. (VerfasserIn) , Köthe, Ullrich (VerfasserIn) , Rehfeld, Kira (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2023
In: Environmental data science
Year: 2023, Jahrgang: 2, Pages: 1-19
ISSN:2634-4602
DOI:10.1017/eds.2023.29
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1017/eds.2023.29
Verlag, kostenfrei, Volltext: https://www.cambridge.org/core/journals/environmental-data-science/article/towards-learned-emulation-of-interannual-water-isotopologue-variations-in-general-circulation-models/3827A25931D2F024B2D5593E9A6C714C
Volltext
Verfasserangaben:Jonathan Wider, Jakob Kruse, Nils Weitzel, Janica C. Bühler, Ullrich Köthe and Kira Rehfeld

MARC

LEADER 00000caa a2200000 c 4500
001 1894660358
003 DE-627
005 20241202174055.0
007 cr uuu---uuuuu
008 240708s2023 xx |||||o 00| ||eng c
024 7 |a 10.1017/eds.2023.29  |2 doi 
035 |a (DE-627)1894660358 
035 |a (DE-599)KXP1894660358 
035 |a (OCoLC)1474485842 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Wider, Jonathan  |e VerfasserIn  |0 (DE-588)1334901279  |0 (DE-627)1894659414  |4 aut 
245 1 0 |a Towards learned emulation of interannual water isotopologue variations in General Circulation Models  |c Jonathan Wider, Jakob Kruse, Nils Weitzel, Janica C. Bühler, Ullrich Köthe and Kira Rehfeld 
264 1 |c 2023 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 08.07.2024 
520 |a Simulating abundances of stable water isotopologues, that is, molecules differing in their isotopic composition, within climate models allows for comparisons with proxy data and, thus, for testing hypotheses about past climate and validating climate models under varying climatic conditions. However, many models are run without explicitly simulating water isotopologues. We investigate the possibility of replacing the explicit physics-based simulation of oxygen isotopic composition in precipitation using machine learning methods. These methods estimate isotopic composition at each time step for given fields of surface temperature and precipitation amount. We implement convolutional neural networks (CNNs) based on the successful UNet architecture and test whether a spherical network architecture outperforms the naive approach of treating Earth’s latitude-longitude grid as a flat image. Conducting a case study on a last millennium run with the iHadCM3 climate model, we find that roughly 40% of the temporal variance in the isotopic composition is explained by the emulations on interannual and monthly timescale, with spatially varying emulation quality. The tested CNNs outperform simple baseline models such as random forest and pixel-wise linear regression substantially. A modified version of the standard UNet architecture for flat images yields results that are as good as the predictions by the spherical CNN. Variations in the implementation of isotopes between climate models likely contribute to an observed deterioration of emulation results when testing on data obtained from different climate models than the one used for training. Future work toward stable water-isotope emulation might focus on achieving robust climate-oxygen isotope relationships or exploring the set of possible predictor variables. 
650 4 |a Climate models 
650 4 |a convolutional neural networks 
650 4 |a paleoclimate 
650 4 |a spherical networks 
700 1 |a Kruse, Jakob  |d 1990-  |e VerfasserIn  |0 (DE-588)1194989497  |0 (DE-627)1677183136  |4 aut 
700 1 |a Weitzel, Nils  |e VerfasserIn  |0 (DE-588)1205400281  |0 (DE-627)1691042560  |4 aut 
700 1 |a Bühler, Janica C.  |e VerfasserIn  |4 aut 
700 1 |a Köthe, Ullrich  |e VerfasserIn  |0 (DE-588)123963435  |0 (DE-627)594480884  |0 (DE-576)304484520  |4 aut 
700 1 |a Rehfeld, Kira  |e VerfasserIn  |0 (DE-588)1042380503  |0 (DE-627)768982154  |0 (DE-576)393913570  |4 aut 
773 0 8 |i Enthalten in  |t Environmental data science  |d Cambridge : Cambridge University Press, 2022  |g 2(2023), Artikel-ID e35, Seite 1-19  |h Online-Ressource  |w (DE-627)1799665216  |w (DE-600)3116427-4  |x 2634-4602  |7 nnas  |a Towards learned emulation of interannual water isotopologue variations in General Circulation Models 
773 1 8 |g volume:2  |g year:2023  |g elocationid:e35  |g pages:1-19  |g extent:19  |a Towards learned emulation of interannual water isotopologue variations in General Circulation Models 
856 4 0 |u https://doi.org/10.1017/eds.2023.29  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.cambridge.org/core/journals/environmental-data-science/article/towards-learned-emulation-of-interannual-water-isotopologue-variations-in-general-circulation-models/3827A25931D2F024B2D5593E9A6C714C  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240708 
993 |a Article 
994 |a 2023 
998 |g 123963435  |a Köthe, Ullrich  |m 123963435:Köthe, Ullrich  |d 700000  |d 708070  |e 700000PK123963435  |e 708070PK123963435  |k 0/700000/  |k 1/700000/708070/  |p 5 
998 |g 1205400281  |a Weitzel, Nils  |m 1205400281:Weitzel, Nils  |d 130000  |d 130500  |e 130000PW1205400281  |e 130500PW1205400281  |k 0/130000/  |k 1/130000/130500/  |p 3 
998 |g 1194989497  |a Kruse, Jakob  |m 1194989497:Kruse, Jakob  |d 110000  |e 110000PK1194989497  |k 0/110000/  |p 2 
999 |a KXP-PPN1894660358  |e 4548131299 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1894660358","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 08.07.2024"],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Wider, Jonathan","given":"Jonathan","family":"Wider"},{"family":"Kruse","given":"Jakob","roleDisplay":"VerfasserIn","display":"Kruse, Jakob","role":"aut"},{"given":"Nils","family":"Weitzel","role":"aut","display":"Weitzel, Nils","roleDisplay":"VerfasserIn"},{"given":"Janica C.","family":"Bühler","role":"aut","roleDisplay":"VerfasserIn","display":"Bühler, Janica C."},{"role":"aut","roleDisplay":"VerfasserIn","display":"Köthe, Ullrich","given":"Ullrich","family":"Köthe"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Rehfeld, Kira","given":"Kira","family":"Rehfeld"}],"title":[{"title":"Towards learned emulation of interannual water isotopologue variations in General Circulation Models","title_sort":"Towards learned emulation of interannual water isotopologue variations in General Circulation Models"}],"relHost":[{"title":[{"title_sort":"Environmental data science","title":"Environmental data science"}],"pubHistory":["Volume 1 (2022)-"],"part":{"volume":"2","text":"2(2023), Artikel-ID e35, Seite 1-19","extent":"19","year":"2023","pages":"1-19"},"titleAlt":[{"title":"EDS"}],"disp":"Towards learned emulation of interannual water isotopologue variations in General Circulation ModelsEnvironmental data science","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"1799665216","language":["eng"],"origin":[{"dateIssuedDisp":"2022-","dateIssuedKey":"2022","publisher":"Cambridge University Press","publisherPlace":"Cambridge"}],"id":{"issn":["2634-4602"],"eki":["1799665216"],"zdb":["3116427-4"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"19 S."}],"name":{"displayForm":["Jonathan Wider, Jakob Kruse, Nils Weitzel, Janica C. Bühler, Ullrich Köthe and Kira Rehfeld"]},"id":{"doi":["10.1017/eds.2023.29"],"eki":["1894660358"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"2023"}]} 
SRT |a WIDERJONATTOWARDSLEA2023