Sample-efficient estimation of entanglement entropy through supervised learning
We explore a supervised machine-learning approach to estimate the entanglement entropy of multiqubit systems from few experimental samples. We put a particular focus on estimating both aleatoric and epistemic uncertainty of the network's estimate and benchmark against the best-known conventiona...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
January 2024
|
| In: |
Physical review
Year: 2024, Jahrgang: 109, Heft: 1, Pages: 1-6 |
| ISSN: | 2469-9934 |
| DOI: | 10.1103/PhysRevA.109.012403 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.109.012403 Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.109.012403 |
| Verfasserangaben: | Maximilian Rieger, Moritz Reh, and Martin Gärttner |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1895227267 | ||
| 003 | DE-627 | ||
| 005 | 20241205151423.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240712s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/PhysRevA.109.012403 |2 doi | |
| 035 | |a (DE-627)1895227267 | ||
| 035 | |a (DE-599)KXP1895227267 | ||
| 035 | |a (OCoLC)1475302446 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Rieger, Maximilian |e VerfasserIn |0 (DE-588)1335485554 |0 (DE-627)1895227518 |4 aut | |
| 245 | 1 | 0 | |a Sample-efficient estimation of entanglement entropy through supervised learning |c Maximilian Rieger, Moritz Reh, and Martin Gärttner |
| 264 | 1 | |c January 2024 | |
| 300 | |b Illustrationen | ||
| 300 | |a 6 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Veröffentlicht: 2. Januar 2024 | ||
| 500 | |a Gesehen am 12.07.2024 | ||
| 520 | |a We explore a supervised machine-learning approach to estimate the entanglement entropy of multiqubit systems from few experimental samples. We put a particular focus on estimating both aleatoric and epistemic uncertainty of the network's estimate and benchmark against the best-known conventional estimation algorithms. For states that are contained in the training distribution, we observe convergence in a regime of sample sizes in which the baseline method fails to give correct estimates, while extrapolation only seems possible for regions close to the training regime. As a further application of our method, highly relevant for quantum simulation experiments, we estimate the quantum mutual information for nonunitary evolution by training our model on different noise strengths. | ||
| 700 | 1 | |a Reh, Moritz |d 1995- |e VerfasserIn |0 (DE-588)1247844358 |0 (DE-627)1782431616 |4 aut | |
| 700 | 1 | |a Gärttner, Martin |d 1985- |e VerfasserIn |0 (DE-588)1047469529 |0 (DE-627)778426076 |0 (DE-576)401083527 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Physical review |d Woodbury, NY : Inst., 2016 |g 109(2024), 1 vom: Jan., Artikel-ID 012403, Seite 1-6 |h Online-Ressource |w (DE-627)845695479 |w (DE-600)2844156-4 |w (DE-576)454495854 |x 2469-9934 |7 nnas |a Sample-efficient estimation of entanglement entropy through supervised learning |
| 773 | 1 | 8 | |g volume:109 |g year:2024 |g number:1 |g month:01 |g elocationid:012403 |g pages:1-6 |g extent:6 |a Sample-efficient estimation of entanglement entropy through supervised learning |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevA.109.012403 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://link.aps.org/doi/10.1103/PhysRevA.109.012403 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240712 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1047469529 |a Gärttner, Martin |m 1047469529:Gärttner, Martin |d 130000 |e 130000PG1047469529 |k 0/130000/ |p 3 |y j | ||
| 998 | |g 1247844358 |a Reh, Moritz |m 1247844358:Reh, Moritz |d 130000 |d 130700 |e 130000PR1247844358 |e 130700PR1247844358 |k 0/130000/ |k 1/130000/130700/ |p 2 | ||
| 998 | |g 1335485554 |a Rieger, Maximilian |m 1335485554:Rieger, Maximilian |p 1 |x j | ||
| 999 | |a KXP-PPN1895227267 |e 4550010851 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Maximilian Rieger, Moritz Reh, and Martin Gärttner"]},"note":["Veröffentlicht: 2. Januar 2024","Gesehen am 12.07.2024"],"language":["eng"],"relHost":[{"titleAlt":[{"title":"Atomic, molecular, and optical physics and quantum information"}],"origin":[{"dateIssuedDisp":"2016-","publisherPlace":"Woodbury, NY","dateIssuedKey":"2016","publisher":"Inst."}],"title":[{"title":"Physical review","title_sort":"Physical review"}],"id":{"eki":["845695479"],"issn":["2469-9934"],"zdb":["2844156-4"]},"disp":"Sample-efficient estimation of entanglement entropy through supervised learningPhysical review","physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"845695479","language":["eng"],"pubHistory":["Vol. 93, Iss. 1, January 2016-"],"corporate":[{"role":"isb","display":"American Institute of Physics","roleDisplay":"Herausgebendes Organ"},{"display":"American Physical Society","role":"isb","roleDisplay":"Herausgebendes Organ"}],"name":{"displayForm":["publ. by The American Institute of Physics"]},"part":{"issue":"1","volume":"109","extent":"6","year":"2024","pages":"1-6","text":"109(2024), 1 vom: Jan., Artikel-ID 012403, Seite 1-6"}}],"recId":"1895227267","person":[{"display":"Rieger, Maximilian","role":"aut","roleDisplay":"VerfasserIn","family":"Rieger","given":"Maximilian"},{"roleDisplay":"VerfasserIn","family":"Reh","given":"Moritz","display":"Reh, Moritz","role":"aut"},{"role":"aut","display":"Gärttner, Martin","family":"Gärttner","given":"Martin","roleDisplay":"VerfasserIn"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"noteIll":"Illustrationen","extent":"6 S."}],"id":{"doi":["10.1103/PhysRevA.109.012403"],"eki":["1895227267"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"January 2024"}],"title":[{"title_sort":"Sample-efficient estimation of entanglement entropy through supervised learning","title":"Sample-efficient estimation of entanglement entropy through supervised learning"}]} | ||
| SRT | |a RIEGERMAXISAMPLEEFFI2024 | ||