Sample-efficient estimation of entanglement entropy through supervised learning

We explore a supervised machine-learning approach to estimate the entanglement entropy of multiqubit systems from few experimental samples. We put a particular focus on estimating both aleatoric and epistemic uncertainty of the network's estimate and benchmark against the best-known conventiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rieger, Maximilian (VerfasserIn) , Reh, Moritz (VerfasserIn) , Gärttner, Martin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 2024
In: Physical review
Year: 2024, Jahrgang: 109, Heft: 1, Pages: 1-6
ISSN:2469-9934
DOI:10.1103/PhysRevA.109.012403
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.109.012403
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.109.012403
Volltext
Verfasserangaben:Maximilian Rieger, Moritz Reh, and Martin Gärttner

MARC

LEADER 00000caa a2200000 c 4500
001 1895227267
003 DE-627
005 20241205151423.0
007 cr uuu---uuuuu
008 240712s2024 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevA.109.012403  |2 doi 
035 |a (DE-627)1895227267 
035 |a (DE-599)KXP1895227267 
035 |a (OCoLC)1475302446 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Rieger, Maximilian  |e VerfasserIn  |0 (DE-588)1335485554  |0 (DE-627)1895227518  |4 aut 
245 1 0 |a Sample-efficient estimation of entanglement entropy through supervised learning  |c Maximilian Rieger, Moritz Reh, and Martin Gärttner 
264 1 |c January 2024 
300 |b Illustrationen 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 2. Januar 2024 
500 |a Gesehen am 12.07.2024 
520 |a We explore a supervised machine-learning approach to estimate the entanglement entropy of multiqubit systems from few experimental samples. We put a particular focus on estimating both aleatoric and epistemic uncertainty of the network's estimate and benchmark against the best-known conventional estimation algorithms. For states that are contained in the training distribution, we observe convergence in a regime of sample sizes in which the baseline method fails to give correct estimates, while extrapolation only seems possible for regions close to the training regime. As a further application of our method, highly relevant for quantum simulation experiments, we estimate the quantum mutual information for nonunitary evolution by training our model on different noise strengths. 
700 1 |a Reh, Moritz  |d 1995-  |e VerfasserIn  |0 (DE-588)1247844358  |0 (DE-627)1782431616  |4 aut 
700 1 |a Gärttner, Martin  |d 1985-  |e VerfasserIn  |0 (DE-588)1047469529  |0 (DE-627)778426076  |0 (DE-576)401083527  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Woodbury, NY : Inst., 2016  |g 109(2024), 1 vom: Jan., Artikel-ID 012403, Seite 1-6  |h Online-Ressource  |w (DE-627)845695479  |w (DE-600)2844156-4  |w (DE-576)454495854  |x 2469-9934  |7 nnas  |a Sample-efficient estimation of entanglement entropy through supervised learning 
773 1 8 |g volume:109  |g year:2024  |g number:1  |g month:01  |g elocationid:012403  |g pages:1-6  |g extent:6  |a Sample-efficient estimation of entanglement entropy through supervised learning 
856 4 0 |u https://doi.org/10.1103/PhysRevA.109.012403  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevA.109.012403  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20240712 
993 |a Article 
994 |a 2024 
998 |g 1047469529  |a Gärttner, Martin  |m 1047469529:Gärttner, Martin  |d 130000  |e 130000PG1047469529  |k 0/130000/  |p 3  |y j 
998 |g 1247844358  |a Reh, Moritz  |m 1247844358:Reh, Moritz  |d 130000  |d 130700  |e 130000PR1247844358  |e 130700PR1247844358  |k 0/130000/  |k 1/130000/130700/  |p 2 
998 |g 1335485554  |a Rieger, Maximilian  |m 1335485554:Rieger, Maximilian  |p 1  |x j 
999 |a KXP-PPN1895227267  |e 4550010851 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Maximilian Rieger, Moritz Reh, and Martin Gärttner"]},"note":["Veröffentlicht: 2. Januar 2024","Gesehen am 12.07.2024"],"language":["eng"],"relHost":[{"titleAlt":[{"title":"Atomic, molecular, and optical physics and quantum information"}],"origin":[{"dateIssuedDisp":"2016-","publisherPlace":"Woodbury, NY","dateIssuedKey":"2016","publisher":"Inst."}],"title":[{"title":"Physical review","title_sort":"Physical review"}],"id":{"eki":["845695479"],"issn":["2469-9934"],"zdb":["2844156-4"]},"disp":"Sample-efficient estimation of entanglement entropy through supervised learningPhysical review","physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"845695479","language":["eng"],"pubHistory":["Vol. 93, Iss. 1, January 2016-"],"corporate":[{"role":"isb","display":"American Institute of Physics","roleDisplay":"Herausgebendes Organ"},{"display":"American Physical Society","role":"isb","roleDisplay":"Herausgebendes Organ"}],"name":{"displayForm":["publ. by The American Institute of Physics"]},"part":{"issue":"1","volume":"109","extent":"6","year":"2024","pages":"1-6","text":"109(2024), 1 vom: Jan., Artikel-ID 012403, Seite 1-6"}}],"recId":"1895227267","person":[{"display":"Rieger, Maximilian","role":"aut","roleDisplay":"VerfasserIn","family":"Rieger","given":"Maximilian"},{"roleDisplay":"VerfasserIn","family":"Reh","given":"Moritz","display":"Reh, Moritz","role":"aut"},{"role":"aut","display":"Gärttner, Martin","family":"Gärttner","given":"Martin","roleDisplay":"VerfasserIn"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"noteIll":"Illustrationen","extent":"6 S."}],"id":{"doi":["10.1103/PhysRevA.109.012403"],"eki":["1895227267"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"January 2024"}],"title":[{"title_sort":"Sample-efficient estimation of entanglement entropy through supervised learning","title":"Sample-efficient estimation of entanglement entropy through supervised learning"}]} 
SRT |a RIEGERMAXISAMPLEEFFI2024