DLP 4D printing of multi-responsive bilayered structures [data]

Advances in soft robotics strongly rely on the development and manufacturing of new responsive soft materials. In particular, light-based 3D printing techniques, and especially, digital light processing (DLP), offer a versatile platform for the fast manufacturing of complex 3D/4D structures with a h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mainik, Philipp (VerfasserIn) , Hsu, Li-Yun (VerfasserIn) , Zimmer, Claudius W. (VerfasserIn) , Fauser, Dominik (VerfasserIn) , Steeb, Holger (VerfasserIn) , Blasco, Eva (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2024-04-22
DOI:10.11588/data/CVHTJ1
Schlagworte:
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.11588/data/CVHTJ1
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/CVHTJ1
Volltext
Verfasserangaben:Philipp Mainik, Li-Yun Hsu, Claudius W. Zimmer, Dominik Fauser, Holger Steeb, Eva Blasco
Beschreibung
Zusammenfassung:Advances in soft robotics strongly rely on the development and manufacturing of new responsive soft materials. In particular, light-based 3D printing techniques, and especially, digital light processing (DLP), offer a versatile platform for the fast manufacturing of complex 3D/4D structures with a high spatial resolution. In this work, DLP all-printed bilayered structures exhibiting reversible and multi-responsive behavior are presented for the first time. For this purpose, liquid crystal elastomers (LCEs) are used as active layers and combined with a printable non-responsive elastomer acting as a passive layer. Furthermore, selective light response is incorporated by embedding various organic dyes absorbing light at different regimes in the active layers. An in-depth characterization of the single materials and printed bilayers demonstrates a reversible and selective response. Last, the versatility of the approach is shown by DLP printing a bilayered complex 3D structure consisting of four different materials (a passive and three different LCE active materials), which exhibit different actuation patterns when irradiated with different wavelengths of light.
Beschreibung:Gefördert durch: DFG Excellence Cluster 3D Matter Made to Order: EXC-2082/1-390761711; Carl Zeiss Foundation: Carl-Zeiss-Foundation-FocusHEIKA; DFG Excellence Cluster Data-Integrated Simulation Science (SimTech): EXC-2075-390740016; DFG Priority Program Soft Material Robotic Systems: 498339709; DFG Research Training Group Mixed Ionic Electronic Transport: GRK 2948
Gesehen am 15.07.2024
Beschreibung:Online Resource
DOI:10.11588/data/CVHTJ1