Knowledge-enhanced neural networks for machine reading comprehension [source code and additional material]"

Machine Reading Comprehension is a language understanding task where a system is expected to read a given passage of text and typically answer questions about it. When humans assess the task of reading comprehension, in addition to the presented text, they usually use the knowledge that they already...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mihaylov, Todor (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2024-04-24
DOI:10.11588/data/HU3ARF
Schlagworte:
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.11588/data/HU3ARF
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/HU3ARF
Volltext
Verfasserangaben:Todor Mihaylov

MARC

LEADER 00000cmi a2200000 c 4500
001 1895400953
003 DE-627
005 20240717153418.0
006 su| d|o |0 |0
007 cr uuu---uuuuu
008 240715c20249999xx |o | eng c
024 7 |a 10.11588/data/HU3ARF  |2 doi 
024 8 |a GRK 1994/1  |q Grant number 
035 |a (DE-627)1895400953 
035 |a (DE-599)KXP1895400953 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Mihaylov, Todor  |d 1989-  |e VerfasserIn  |0 (DE-588)1208448382  |0 (DE-627)1694700429  |4 aut 
245 1 0 |a Knowledge-enhanced neural networks for machine reading comprehension [source code and additional material]"  |c Todor Mihaylov 
264 1 |a Heidelberg  |b Universität  |c 2024-04-24 
300 |a 1 Online-Ressource (4 Files) 
336 |a Text  |b txt  |2 rdacontent 
336 |a Computerdaten  |b cod  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gefördert durch: German Research Foundation: Research Training Group Adaptive Preparation of Information from Heterogeneous Sources (AIPHES) GRK 1994/1 
500 |a Gesehen am 15.07.2024 
520 |a Machine Reading Comprehension is a language understanding task where a system is expected to read a given passage of text and typically answer questions about it. When humans assess the task of reading comprehension, in addition to the presented text, they usually use the knowledge that they already know, such as commonsense and world knowledge, or language skills that they previously acquired - understanding the events and arguments in a text (who did what to whom), their participants and the relation in discourse. In contrast, neural network approaches for machine reading comprehension focused on training end-to-end systems that rely only on annotated task-specific data. In this thesis, we explore approaches for tackling the reading comprehension problem, motivated by how a human would solve the task, using existing background and commonsense knowledge or knowledge from various linguistic tasks. First, we develop a neural reading comprehension model that integrates external commonsense knowledge encoded as a key-value memory. Instead of relying only on document-to-question interaction or discrete features, our model attends to relevant external knowledge and combines this knowledge with the context representation before inferring the answer. This allows the model to attract and imply knowledge from an external knowledge source that is not explicitly stated in the text but is relevant for inferring the answer. We demonstrated that the proposed approach improves the performance of very strong base models for cloze-style reading comprehension and open-book question answering. By including knowledge explicitly, our model can also provide evidence about the background knowledge used in the reasoning process. Further, we examined the impact of transferring linguistic knowledge from low-level linguistic tasks into a reading comprehension system using neural representations. Our experiments show that the knowledge transferred from the neural representations trained on these linguistic tasks can be adapted and combined together to improve the reading comprehension task early in training and when trained with small portions of the data. Last, we propose to use structured linguistic annotations as a basis for a Discourse-Aware Semantic Self-Attention encoder that we employ for reading comprehension of narrative texts. We extract relations between discourse units, events, and their arguments, as well as co-referring mentions, using available annotation tools. The empirical evaluation shows that the investigated structures improve the overall performance (up to +3.4 Rouge-L), especially intra-sentential and cross-sentential discourse relations, sentence-internal semantic role relations, and long-distance coreference relations. We also show that dedicating self-attention heads to intra-sentential relations and relations connecting neighboring sentences is beneficial for finding answers to questions in longer contexts. These findings encourage the use of discourse-semantic annotations to enhance the generalization capacity of self-attention models for machine reading comprehension. 
650 4 |a Computer and Information Science 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
655 7 |a Datenbank  |0 (DE-588)4011119-2  |0 (DE-627)106354256  |0 (DE-576)208891943  |2 gnd-content 
787 0 8 |i Forschungsdaten zu  |a Mihaylov, Todor, 1989 -   |t Knowledge-enhanced neural networks for machine reading comprehension  |d Heidelberg, 2022  |h 1 Online-Ressource (ix, 159 Seiten)  |w (DE-627)188111855X 
787 0 8 |i Forschungsdaten zu  |a Mihaylov, Todor, 1989 -   |t Knowledgeable reader: Enhancing cloze-style reading comprehension with external commonsense knowledge  |d 2018  |w (DE-627)1895433908 
787 0 8 |i Forschungsdaten zu  |a Mihaylov, Todor, 1989 -   |t Can a suit of armor conduct electricity?  |d 2018  |w (DE-627)1895436907 
787 0 8 |i Forschungsdaten zu  |a Mihaylov, Todor, 1989 -   |t Discourse-aware semantic self-attention for narrative reading comprehension  |d 2019  |w (DE-627)1895437903 
856 4 0 |u https://doi.org/10.11588/data/HU3ARF  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/HU3ARF  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a BO 
992 |a 20240715 
993 |a ResearchData 
994 |a 2024 
998 |g 1208448382  |a Mihaylov, Todor  |m 1208448382:Mihaylov, Todor  |p 1  |x j  |y j 
999 |a KXP-PPN1895400953  |e 4551055581 
BIB |a Y 
JSO |a {"id":{"doi":["10.11588/data/HU3ARF"],"eki":["1895400953"]},"origin":[{"publisherPlace":"Heidelberg","dateIssuedDisp":"2024-04-24","publisher":"Universität","dateIssuedKey":"2024"}],"title":[{"title":"Knowledge-enhanced neural networks for machine reading comprehension [source code and additional material]\"","title_sort":"Knowledge-enhanced neural networks for machine reading comprehension [source code and additional material]\""}],"person":[{"given":"Todor","family":"Mihaylov","role":"aut","roleDisplay":"VerfasserIn","display":"Mihaylov, Todor"}],"name":{"displayForm":["Todor Mihaylov"]},"language":["eng"],"recId":"1895400953","physDesc":[{"extent":"1 Online-Ressource (4 Files)"}],"note":["Gefördert durch: German Research Foundation: Research Training Group Adaptive Preparation of Information from Heterogeneous Sources (AIPHES) GRK 1994/1","Gesehen am 15.07.2024"],"type":{"bibl":"dataset","media":"Online-Ressource"}} 
SRT |a MIHAYLOVTOKNOWLEDGEE2024